• Title/Summary/Keyword: organic fertilizer.

Search Result 1,515, Processing Time 0.041 seconds

The Limnological Survey of Major Lakes in Korea (4): Lake Juam (국내 주요 호수의 육수학적 조사(4) : 주암호)

  • Kim, Bom-Chul;Heo, Woo-Myung;Lim, Byung-Jin;Hwang, Gil-Son;Choi, Kwang-Soon;Choi, Jong-Soo;Park, Ju-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.30-44
    • /
    • 2001
  • In this study limnological characteristics of Lake Juam was surveyed from June 1993 to May 1994 in order to provides important information regarding water resources. Secchi disc transparency, epilimnetic chlorophyll a (chi-a), total nitrogen (TN), total phosphorus (TP) concentration and primary productivity were in the range of $2.0{\sim}4.5\;m$, $0.9{\sim}13.6\;mgChl/m^3$, 0.78$\{sim}$2.32 mgN/l, $11{\sim}56\;mgP/m^3$, $270{\sim}2.160\;mgCm^{-2}\;day^{-1}$, respectively. On the basis of TP, Chl-a and Secchi disc depth, the trophic state of Lake Juam can be classied as mesotrophic lake. The phosphorus inputs from non-point sources are concentrated in heavy rain episodes during the monsoon season. As a result, phosphorus concentration are higher in summer than in winter. TP loading from the watershed were estimated to be $0.9\;gPm^{-2}yr^{-1}$, which correspond to a boundary of the critical loading ($1.0\;gPm^{-2}yr^{-1}$) for eutrophication. From the results of the algal assay, both phosphous and nitrogen act as limiting nutrients in algal growth. The seasonal succession of phytoplankton community structure in Lake Juam was similar to that observed in other temperate lakes. Diatoms (Asterionella formosa and Aulacoseira granulate var. angustissima)fujacofeira BraHuJafa uar. aHgusHrsiaia) weredominant in spring and winter, cyanobacteria) were dominant in warm season. The organic carbon, nitrogen and phosphorus content of lake sediment were $9.5{\sim}14.0\;mgC/g$, $1.01{\sim}1.82\;mgN/g$ and $0.51{\sim}0.65\;mgP/g$, respectively. The allochthonous organic carbon loading from the watershed and autochthonous organic carbon loading by primary production of phytoplankton were determined to be 1,122 tC/yr and 6,718 tC/yr, respectively. To prevent eutrophication of Lake Juam, nutrient management of watershed should be focus on reduction of fertilizer application, proper treatment of manure, and conservation of topsoil as well as point source.

  • PDF

Furrow Covering Effects with Rice Straw on Nutrient Discharge from Upland Soil Used for Red Pepper Cultivation (고추밭 고랑 볏짚피복에 의한 양분유출 특성)

  • Hong, Seung-Chang;Kim, Min-Kyeong;Jung, Goo-Buk;So, Kyu-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Excessive application of nutrient supplement on the upland soil may increase the amount of discharge to surrounding water systems. The chemical fertilizer (CF), cow manure compost (CMC), and pig manure compost (PMC) are used as a nutrient supplement for cultivation of red pepper. Rice straws are widely used as a soil covering material in order to reduce weed occurrence, to protect soil moisture, and to supply organic matter in upland soil. This study was conducted to evaluate the furrow covering effect with rice straw on nutrient discharge in upland soil used for red pepper cultivation. The experimental plots of nutrient supplement were consisted of CF, CMC, and PMC and the amount of nutrient application were as recommended amount after soil test for red pepper cultivation. Each nutrient supplement treatment plot has no furrow covering (CFC) as a control and furrow covering with rice straw (FCS), respectively. Furrow covering with rice straw (FCS) of CF treatment and CMC treatment reduced the amount of T-N(total nitrogen) discharge by $1.4kg\;ha^{-1}$, $2.1kg\;ha^{-1}$, respectively, compared to control. While the amount of T-P(total phosphorus) discharge of the furrow covering with rice straw of CF, CMC, and PMC increased by $2.1kg\;ha^{-1}$, $2.1kg\;ha^{-1}$, and $0.2kg\;ha^{-1}$, respectively, compared to control. The phosphorus and nitrogen content of straw were 0.4 % and 0.3 % respectively. In addition, in three week the phosphorus was eluted from the straw which soaked in distilled water. Thus, it was assumed that T-P discharging originated from rice straw which applied as a furrow covering material. The furrow covering with rice straw reduced weed occurrence compared to control. But production of fresh red pepper was not influenced significantly by furrow covering with rice straw. In conclusion, excessive furrow covering with rice straw could induce T-P discharge from upland soil used for red pepper cultivation. Further studies are needed to evaluate the appropriate amount of rice straw as a furrow covering material.

Elevated Temperature Treatment Induced Rice Growth and Changes of Carbon Content in Paddy Water and Soil (온도상승 환경 처리가 논토양과 용수에서 탄소량 변화와 벼 생육에 미치는 영향)

  • Hong, Sung-Chang;Hur, Seung-Oh;Choi, Soon-Kun;Choi, Dong-Ho;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • BACKGROUND: The global mean surface temperature change for the period of 2016~2035 relative to 1986~2005 is similar for the four representative concentration pathway (RCP)'s and will likely be in the range of $0.3^{\circ}C$ to $0.7^{\circ}C$. Climate change inducing higher temperature could affect not only crop growth and yield, but also dynamics of carbon in paddy field. METHODS AND RESULTS: This study was conducted to evaluate the effect of elevated temperature on the carbon dynamics in paddy soil and rice growth. In order to control the elevated temperatures, the experiments were set up as the small scale rectangular open top chambers (OTCs) of $1m(width){\times}1m(depth){\times}1m(height)$ (Type 1), $1 m(W){\times}1m(D){\times}1.2m(H)$ (Type 2), and $1m(W){\times}1m(D){\times}1.4m(H)$ (Type 3). The average temperatures of Type 1, Type 2, and Type 3 from July 15 to October 30 were higher than the ambient temperatures at $0.4^{\circ}C$, $0.5^{\circ}C$, and $0.9^{\circ}C$, respectively. For the experiment, Wagner's pots (1/2,000 area) were placed inside chambers. The pots were filled with loamy soil, and chemical fertilizer and organic compost were applied as recommended after soil test. The pots were flooded with agricultural water and rice (Shindongjin-byeo) was planted. It was observed that TOC (total organic carbon) of the water increased by the elevated temperatures and the trend continued until the late growth stage of the rice. Soil TOC contents were reduced by the elevated temperatures. C/N ratios of the rice plant decreased by the elevated temperature treatments. Thus, it was assumed that the elevated temperatures induced to decompose soil organic matter. Elevated temperatures significantly increased the culm length (P<0.01) and culm weight (P<0.05) of rice, but the number and weight of rice panicle did not showed significant differences. CONCLUSION: Based on the results, it was suggested that the elevated temperatures had an effect on changes of soil and water carbons under the possible future climate change environment.

Soil Properties of Chestnut (Castanea crenata) Stands by Regions in Gyeongnam Province (경상남도 밤나무임지의 지역별 토양특성)

  • Kim, Choonsig;Lim, Jong-Taek;Cho, Hyun-Seo;Goo, Gwan-Hyo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.89-95
    • /
    • 2007
  • This study was carried out to evaluate soil properties by regions from chestnut (Castanea crenata Sieb. et Zucc) stands in Gyeongnam province. Soil physical and chemical properties were measured from soil samples of top 20 em collected from three hillslopes (upper, middle, lower) of the chestnut stands in six regions (Jinjusi, Sacheonsi, Sancheonggun, Hadonggun, Goseonggun, Hapcheongun) where are major chestnut cultivation areas throughout the province. Soil properties were significantly different among regions (p<0.05), while were not significantly different among hillslopes (p>0.05). Soil bulk density, soil pore space, soil pH, organic matter content, total nitrogen, available phosphorus, and CEC were significantly different among regions (p<0.05). Soil bulk density was significantly lower (p<0.05) in Hadonggun ($0.96g/cm^3$ than in other regions ($1.12{\sim}1.22g/cm^3$). Soil pH was below pH 5.03 in most regions and Sancheonggun showed the lowest soil pH value (pH 4.62), followed by Jinjusi, Hadonggun, Hapcheongtm, Goseonggun, and Sacheonsi. Organic matter content was highest in Hadonggun (6.46%), while other regions ranged between 2.93% and 3.47%. Total nitrogen content showed a similar trend like the organic matter content. Available phosphorus was above 100 ppm in Jinjusi, Hadonggun and Sancheonggun, but Sacheonsi showed the lowest concentration (15 ppm) among the regions. Cation Exchange Capacity (CEC) was above 10 cmolc/kg in Goseonggun and Hadonggun, but below 8.6 cmolc/kg in Jinjusi and Hapcheongtm. Potassium content ranged between 0.07 and 0.14 cmolc/kg, and magnesium was above 0.66 cmolc/kg in all regions. The results indicate that soil property in chestnut stands was different among regions in Gyeongnam province. This suggested that the chestnut stands should be managed by the fertilization application reflected in the variability of regional soil property in chestnut stands.

Physicochemical Characteristics of Fermented Pig Manure Compost and Cow Manure Compost by Pelletizing (펠렛 가공처리에 따른 돈분 발효퇴비와 우분 발효퇴비의 물리화학적 특성)

  • Jeong, Kwang Hwa;Park, Chi Ho;Choi, Dong Yun;Kwak, Jung Hoon;Yang, Chang Bum;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.118-127
    • /
    • 2005
  • The best way to treat livestock manure is a recycling the manure to arable land as an organic fertilizer. In this study, fermented cow manure compost and pig manure compost were used as a raw materials for pelletizing. The changes of physicochemical properties of each composts and pellets were investigated. The aim of this research was to improve availability of livestock manure compost. In pelletizing process of fermented livestock manure compost, the optimal water content to make pellet was around 40%. When clay was mixed by volume more than 15% as a bonding agent, the condition of pelletizing process was beginning to improve. On a dry matter basis, the contents of N, P and K of fermented pig manure compost were 2.05%, 1.89% and 1.31%, respectively. After pelletizing, the contents of compost pelleted with the pig manure compost were 1.96% 1.73% and 0.89%, respectively. The same parameters of cow manure compost were 2.52%, 1.01% and 2.98%, respectively. After processing, the contents of compost pelleted with the cow manure compost were 2.45%, 1.10% and 2.93%, respectively. After pelletizing, there were little change in the content of heavy metals such as Pb, Cd, As and Hg. When pelleted compost dried naturally was submerged in water, it was completely dissolved in 30 minutes. On the other hand, Pelleted compost dried with the mechanical convection oven set $70^{\circ}C$ for 24 hours was completely dissolved in 960 minutes. The volume and weight of pelleted compost were decreased with time. After 30 days of storing, the weight of pelleted compost was decreased by 15% compared with its original weight. The volume of it was decreased by 17~25% in the same time.

  • PDF

The Effect of the Chang in Forest Environment on physico-chemical Properhes of Soil Located in Seoul Royal Tomb (서울 왕릉지역의 산림환경변화가 토양 이.화학성에 미치는 영향)

  • Nam, Yi;Yee, Sun;Bae, Sang-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.32-37
    • /
    • 2005
  • The soil properties of the royal tombs (managed by cultural properties administration) located in Seoul and suburban Gyonggi area were investigated to see the influence of the change in soil environment on the royal tomb s이I. To compare the soil chemical properties of four royal tombs soil of Changdeokgung, Jongmyo, Seooneung, and Dongguneung, pH, organic content, available phosphate, extractable calcium, extractable potassium, extractable magnesium, cation exchange capacity, degree of base saturation, and total nitrogen content were measured. The concentrations of Cd, Pb, and Cu measured as the degree of heavy metal contamination can be an indication of atmospheric pollution in the soil environment. To estimate the degree of soil compaction, soil hardness, pore space, porosity, bulk density, and soil atmosphere were analyzed. Through these studies, following conclusions were made: 1. The soil hardness and pore space which can be used as indexes of soil compaction, were worse in the soil of Seooneung than in those of Changdeokgung and Dongguneury. These phenomena seem to be the result of increase in visitors in Seooneung and Dongguneung better and soil management in Changdeokgung and Dongguneung. When three different regions of forest area, prohibited area, and soil compaction area in Seooneung soil were compared, the degree of compaction in the forest area was less than compaction area, indicating the need for the employment of soil resting period in the compaction area. 2. The pH measurements of all four royal tombs soil were higher in top soil than sub soil. The higher soil pH values in Jongmyo and Seooneung seem to result from the application of soil conditioner. In the case of Seooneung, the values for soil pH and organic content were higher in the forest area than those in compaction area. It is thought that active soil management was employed in the forest area through application of organic matters and soil conditioners. 3. The heavy metal contents from soil of Changdeokgung and Jongmyo were higher than that from soil of Dongguneung. Since Changdeokgung and Jongmyo are located inside Seoul, it is thought that the high level of heavy metal concentrations in these royal tomb soil is the result of accumulation of pollutants from the city.

Monitoring Soil Characteristics and Growth of Pinus densiflora Five Years after Restoration in the Baekdudaegan Ridge (백두대간 마루금 복원사업지에서의 5년 경과 후 토양특성 및 소나무 생장 모니터링)

  • Han, Seung Hyun;Kim, Jung Hwan;Kang, Won Seok;Hwang, Jae Hong;Park, Ki Hyung;Kim, Chan-Beom
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • This study was conducted to monitor the soil characteristics and growth of Pinus densiflora and to determine the effect of soil characteristics on growth rate five years after an ecological restoration project in Baekdudaegan ridge including Ihwaryeong, Yuksimnyeong, and Beoljae sites. The ecological restoration project was executed with the forest of P. densiflora in 2012-2013. In April 2018, we collected soil samples from each site and measured the height and the diameter at breach height (DBH) of P. densiflora. Although there was no significant change of soil pH compared to the early stage of restoration (one year after the project), it was high in Ihwaryeong, and Beoljae with values of 7.7 and 6.4, respectively. Also, the organic matter decreased by 70-80%, and the available phosphorus (P) was unchanged in three restoration sites. The decreased organic matter can be attributed to restriction of inflow and thus decomposition of litter in the early stage after the restoration. The tree height growth rate ($m\;yr^{-1}$) of P. densiflora in Yuksimnyeong was the highest at 1.02, followed by Beolja at 0.75 and Ihwaryeong at 0.17. The height growth rate showed negative relationships with soil pH and cations, including Na and Ca concentrations and a positive relationship with available phosphate. The low growth rate in the Ihwaryeong site, in particular, might result from the poor nutrient availability due to high soil pH and the decrease in water absorption into the root due to high Na and Ca concentrations. The substantial reduction of organic matter after five years indicates that the need for soil improvement using chemical fertilizer and biochar.

Study on Forage Cropping System Adapted to Soil Characteristics in Reclaimed Tidal Land (간척지 토양특성에 알맞은 사료작물 작부체계 연구)

  • Yang, Chang-Hyu;Lee, Jang-Hee;Kim, Sun;Jeong, Jae-Hyeok;Baek, Nam-Hyun;Choi, Weon-Young;Lee, Sang-Bok;Kim, Young-Doo;Kim, Si-Ju;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.385-392
    • /
    • 2012
  • This study was conducted to find out the optimum cropping system for the stable production of forage crops in the newly reclaimed land located at Gwanghwal and Gyehwa region of Saemangum reclaimed tide land from October, 2009 to October, 2011. Whole crop barley (WCB), Rye, Italyan-ryegrass (IRG) as winter crops and Corn, Sorghum${\times}$sudangrass hybrid (SSH) as summer crops were cultivated. Soil chemical properties, nutrient uptake, feed value, growth and yield were examinated. The testing soil was showed saline alkali soil where the contents of organic matter, available phosphate and exchangeable calcium were very low, while exchangeable sodium and magnesium were higher. Changes of soil salinity during the growing season of forage crops were less than 0.2%, and the growth of forage crops was not affected by salt injury. Standing rates of winter crops were higher in the order of Rye, WCB, and IRG, while the dry matter yield of winter crops was higher in the order of IRG, Rye and WCB. The highest crude protein (CP) content was recorded in IRG, and total digestive nutrients (TDN) contents were increased in the order of WCB, IRG, and Rye. The TDN content was higher in corn, whereas other feed value was higher in SSH. The content of mineral nutrients on stem, leaf and grain in IRG, Corn were high. After experiment pH was lowed, contents of exchangeable magnesium, sodium and organic matter were decreased while contents of total nitrogen, available phosphate and exchangeable potassium, calcium were increased. Winer crops and summer crops after continually cultivating in cropping system, fresh matter yield increased, compared to WCB-Corn (74,740 kg $ha^{-1}$), IRG-SSH 10%, IRG-Corn 7%, Rye-SSH 6%, Rye-Corn and WCB-SSH 3%. Dry matter yield increased, compared to WCB-Corn (20,280 kg $ha^{-1}$), IRG-SSH 7%, Rye-SSH 6%, IRG-Corn/Rye-Corn/WCB-SSH 3%. The TDN yield increased, compared to WCB-Corn (13,830 kg $ha^{-1}$), IRG-SSH 2%, WCB-SSH and IRG-Corn 1%. Therefore, we suggest that the crop combination of IRG-SSH and WCB-SSH would be preferred for silage stable production.

Isotope Ratio of Mineral N in Pinus Densiflora Forest Soils in Rural and Industrial Areas: Potential Indicator of Atmospheric N Deposition and Soil N Loss (질소공급, 고추의 생육 및 수량에 대한 녹비작물 환원 효과)

  • Kwak, Jin-Hyeob;Lim, Sang-Sun;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Lee, Kye-Han;Han, Gwang-Hyun;Ro, Hee-Myong;Lee, Sang-Mo;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Deposition of atmospheric N that is depleted in $^{15}N$ has shown to decrease N isotope ratio ($^{15}N/^{14}N$,expressed as ${\delta}^{15}N$) of forest samples such as tree rings, foliage, and total soil-N. However, its effect on ${\delta}^{15}N$ of mineral soil-N which is biologically active N pool has never been tested. In this study, ${\delta}^{15}N$ of mineral N($NH{_4}^+$ and $NO_3{^-}$) in forest soils from organic and two depths of mineral soil layers (0 to 20 cm and 20 to 40cm depth) of Pinus densiflora stands located at two distinct areas (rural and industrial areas) in southern Korea was analyzed to investigate if there is any difference in ${\delta}^{15}N$ of mineral N between these areas. We also evaluated potential N loss of the study sites using ${\delta}^{15}N$ of mineral N. Across the soil layers, the ${\delta}^{15}N$ of $NH{_4}^+$ ranged from +8.9 to +24.8‰ in the rural area and from +4.4 to +13.8‰ in the industrial area. Soils from organic layer (+4.4‰) and mineral layer between 0 and 20 cm (+13.8‰) of industrial area showed significantly lower ${\delta}^{15}N$ of $NH{_4}^+$ than those of rural area (+8.9 and +24.3‰, respectively), probably indicating the greater contribution of $^{15}N$-depleted $NH{_4}^+$ from atmospheric deposition to forest in the industrial area than in the rural area. Meanwhile, ${\delta}^{15}N$ of $NO_3{^-}$ was not different between the rural and industrial areas, probably because ${\delta}^{15}N$ of $NO_3{^-}$ is more likely to be altered by the N loss that causes $^{15}N$ enrichment of the remaining soil N pool. Compared with the ${\delta}^{15}N$ of soil mineral N reported by other studies (from -10.9 to +15.6‰ for $NH{_4}^+$ and -14.8 to +5.6‰ for $NO_3{^-}$), the ${\delta}^{15}N$ observed in our study was substantially high, suggesting that the study sites are more subject to the N loss. It was concluded that $NH{_4}^+$ rather than $NO_3{^-}$ can conserve the ${\delta}^{15}N$ signature of atmospheric N deposition in forest ecosystems.

Effect of the base saturation rate of acidic upland soils on the yield of soybean (산성(酸性) 신개간전(新開墾田) 토양(土壤)의 염기포화도(鹽基飽和度)와 대두수량(大豆收量))

  • Jung, Yee Geun;Hong, Chong Woon;Kim, Yung Sup;Cho, Dae Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.1
    • /
    • pp.23-27
    • /
    • 1974
  • A pot experiment was carried out to investigate the effect of phosphate application and the adjustment of base saturation rate of soils on the growth of soybean. The soils used were very low in available phosphate (10-20ppm) and low in base saturation rates (less than 40%). Treatment included 2 levels of $P_2O_5$ $(40-80ppm){\times}3$ levels of base saturation rates (check, 60.80%) In adjusting the base saturation rate, the ratio between Ca and Mg was maintained at 65:15. Results are summarised as folloing. (1) The levels of phosphate in the experiment did not bring forth significant difference in the yield of soybean. Both 40 and 80ppm of $P_2O_5$ were seemed to be not enough to bring up the remarkable phosphate effect. (2) The increase in base saturation rate of the soils up to 60% proved to be significant in increasing the yield of soybean. Above that level, however, did not affect the yield. (3) The major factor for the increase of yield, in base saturation rate adjustments was the increased Mg-saturation rates. In the range of 10-15% of Mg-saturation rate of soils, there was a linear positive relationship between the yield of soybean and Mg-saturation rate of soils, while the optimum levels of Ca-saturation rates of soil were found to be 35-55%. (4) It was pointed that there is some possibility of relative in-sufficiency of Mg in Korean cultivated soils and that the continued application of liming materials which do not contain proper amounts of Mg may aggravate these situation.

  • PDF