• 제목/요약/키워드: organic electrolyte

Search Result 273, Processing Time 0.024 seconds

Unique Fluid Ensemble including Silicone Oil for the Application of Optical Liquid Lens

  • Bae, Jae-Young;Park, Sung-Soo;Kim, Jae-Hong;Park, Chin-Ho;Choi, Young-Chul;Jung, Ha-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.731-735
    • /
    • 2008
  • The fluid ensemble in the liquid lens, which is composed of electrolyte and silicone oil, is the key material system to vary the focal length processing of the electrochemical desorption. In order to characterize the capability of the liquid lens according to response time and optical range, we prepared a fluid ensemble comprising the electrolyte and oil. To elucidate the physical mechanism of the effective response time, we examined the viscosity dependency while satisfying the requirements for the density and refractive index of the electrolyte and oil, respectively. The characterization results indicated that the response time (up and down) is influenced by the viscosity of the electrolyte and oil. On this basis, we prepared a fluid ensemble capable of reversibly adjusting for the focal length of the liquid lens, as well as the response time. The ensemble is applicable to various systems such as micro-lens and optical sensors.

Study on the Quality Improvement of Acidic Citrus Juices, Citrus natsudaidai and Citrus grandis, by Bipolar Membrane Electrodialysis (전기투석용 bipolar 막을 이용한 하밀감 및 당유자 주스의 품질개선에 관한 연구)

  • Yang, Min-Ho;Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.630-636
    • /
    • 2007
  • Acidic citrus juices obtained from C. natsudaidai and C. grandis were electrodialyzed with bipolar and organic acid selective membrane (ion exchange membrane) cartridges. The pH levels of the acidic citrus juices gradually increased to 14.5% (C. grandis) and 25.2% (C. natsudaidai) by electrodialysis with the bipolar membranes, while levels remained consistent when organic acid selective membranes were applied. The total acidity levels decreased more with the organic selective membrane than with the bipolar membrane. Conductivity rose with the bipolar membranes while the value continued to fall rapidly with the organic selective membranes. Sugar and flavonoid contents remained relatively unchanged, without any significant differences before and after electrodialysis with each membrane. Also, ion contents were almost unchanged with the bipolar membranes and the electrolyte, $K_2SO_4$, as compared to rapid changes in sodium and potassium levels with the organic selective membranes and the electrolyte, $K_2SO_4$. In summary, the use of bipolar membranes provided juice with better sensory quality than that of the organic acid selective membranes.

Trifluoropropyltrimethoxysilane as an Electrolyte Additive to Enhance the Cycling Performances of Lithium-Ion Cells (Trifluoropropyltrimethoxysilane 전해질 첨가제를 이용한 리튬이온전지의 싸이클 특성 향상)

  • Shin, Won-Kyung;Park, Se-Mi;Kim, Dong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.156-163
    • /
    • 2014
  • In this study, we tried to improve the cycling performance of lithium-ion batteries by suppressing decomposition of the electrolyte solution containing fluorsilane-based additive. Trifluoropropyltrimethoxysilane was electrochemically oxidized and reduced prior to the decomposition of the liquid electrolyte composed of lithium salt and carbonate-based organic solvent. Thus, the stable solid electrolyte interphase (SEI) layer on both negative electrode and positive electrode was formed, and it was confirmed that the cycling performance of lithium-ion batteries assembled with electrolyte solution containing 5 wt.% trifluoropropyltrimethoxysilane was the mostly enhanced. The products formed on electrodes were analyzed by the SEM and XPS analysis, and it was demonstrated that trifluoropropyltrimethoxysilane can be one of the promising SEI-forming additives.

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.483-489
    • /
    • 2017
  • The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

Fluoroethylene Carbonate Addition Effect on Electrochemical Properties of Mixed Carbonate-based Organic Electrolyte Solution for a Capacitor

  • Kim, Mingyeong;Kim, Ick-Jun;Yang, Sunhye;Kim, Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.466-470
    • /
    • 2014
  • In this paper, organic solvent electrolytes were prepared by a mixture of propylene carbonate (PC), dimethyl carbonate (DMC), tetraethylammonium tetrafluoroborate ($TEABF_4$)s to evaluate the ionic properties of propylene carbonate (PC)/dimethyl carbonate (DMC) mixtures as solvents for a capacitor application, in view of improving the electrochemical performances. The bulk resistance and interfacial resistance of the mixture electrolytes were investigated using an AC impedance method. The morphology of carbon-based electrodes which were contained in different electrolytes was analyzed by scanning electron microscopy (SEM) method. From the experimental results, by increasing the FEC content, capacitance of electrodes was increased, and the interfacial resistance was decreased. In particular, by a content of 2 vol % FEC in 0.2 M $TEABF_4$ PC/DMC solvent, the electrolyte showed the superior capacitance. However, when FEC content exceeds 2 vol %, the capacitance was decreased and the interfacial resistance was increased.

Aggregation Behavior of Silver and TiO2 Nanoparticles in Aqueous Environment (수환경 특성에 따른 은과 이산화티탄 나노입자의 응집 특성 연구)

  • Lim, Myunghee;Bae, Sujin;Lee, Yong-Ju;Lee, Sung-Kyu;Hwang, Yu Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.571-579
    • /
    • 2013
  • The aggregation behaviors of silver nanoparticles (AgNPs) and titanium dioxide ($TiO_2$) nanoparticles were investigated. Time-resolved dynamic light scattering (DLS) was used to study the initial aggregation of AgNPs and $TiO_2$ over a range of mono (NaCl) and divalent ($CaCl_2$) electrolyte concentrations. The effects of pH, initial concentration of NPs and natural organic matters (NOM) on the aggregation of NPs were also investigated. The aggregation of both nanoparticles showed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type behavior. Divalent electrolyte was more efficient in destabilize the AgNPs and $TiO_2$ than monovalent electrolyte. The effect of pH on the aggregation of AgNPs was not significant. But the aggregation rate of $TiO_2$ was much higher with increasing pH. Higher NPs concentration leads to faster aggregation. Natural organic matter (NOM) was found to substantially hinder the aggregation of both AgNPs and $TiO_2$. This study found that the aggregation behavior of AgNPs and $TiO_2$ are closely associated with environmental factors such as ionic strength, pH, initial concentration of NPs and NOM.

Measurement of Combustible Characteristics of EC(Ethylene Carbonate) for Battery Electrolyte Organic Solvent (배터리 전해질 유기용매인 EC(Ethylene Carbonate)의 연소특성치 측정)

  • Yu-Ri Jang;Yu-Seon Jang;Jae-Jun Choi;Dong-Myeong Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.50-55
    • /
    • 2023
  • Lithium-ion secondary batteries are currently in high demand and supply. The purpose of this study is to secure the safety of the process by studying the combustion characteristics of EC(Ethylene Carbonate), Which is mainly used as an electrolyte organic solvent for lithium ion batteries. The flash points of the EC by using Setaflash and Pensky-Martens closed-cup testers were experimented at 141 ℃ and 143 ℃, respectively. The flash points of the EC by Tag and Cleveland open cup testers were experimented at 152 ℃ and 156 ℃, respectively. The AIT(Auto Ignition Temperature) of the EC was experimented at 420 ℃. The LEL(Lower Explosive Limit) calculated by using lower flash point of Setaflash was calculated at 3.6 Vol.%.

Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Organic Electrolytes (페놀계 활성탄소섬유 전극과 유기성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성)

  • An, Kay Hyeok;Kim, Jong Huy;Shin, Kyung Hee;Noh, Kun Ae;Kim, Tae Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.822-827
    • /
    • 1999
  • The specific capacitance characteristics which were of the electric double layer capacitors(ELDC) made of phenol based activated carbon fiber(ACF) electrodes and organic electrolytes has been investigated with respect to different specific surface area of electrodes and different kinds of organic electrolytes. Throughout charge-discharge cell tests, it has been found that larger surface area and larger pore diameter of electrodes contribute to increase the specific capacitance. Binary mixture of organic solvent with propylene cabonate(PC) and tetrahydrofuran(THF) for 1 M-$LiClO_4$ electrolyte has a higher specific capacitance than single solvent of PC or mixed solvent with PC and diethyl cabonate(DEC). Also, even though 1 M-tetraethylamonium perchlorate(TEAPC) of organic electrolyte shows higher specific capacitance, it has longer charge time because of its lower ion mobility.

  • PDF

Electrochemical Properties of LiMnO2-organic Composite Cathodes with High Capacity for Lithium Ion Polymer Battery (리튬 이온 폴리머 전지용 고용량 LiMnO2-organic Composite 정극의 전기화학적 특성)

  • 김종욱;조영재;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.162-168
    • /
    • 2002
  • The purpose of this study is to research and develop LiMnO$_2$-organic and Li$_{0.3}$MnO$_{2}$-organic composite with high energy density for Lithium ion polymer battery. This paper describes cyclic voltammetry, impedance sepctroscopy, electrochemical properties of LiMnO$_2$-organic and Li$_{0.3}$MnO$_{2}$-organic composite with polymer electrolyte as a function of a mixed ratio. The first discharge capacity of LiMnO$_2$-PAn with 3 wt.% PAn was 83mHA/g, while that of Li$_{0.3}$MnO$_{2}$-PPy composite was 136 mAh/g. The Ah efficiency was above 98% after the 2nd cycle. The LiMnO$_2$-PAn with DMcT 2 wt.% and Li$_{0.3}$MnO$_{2}$-PPy composites cathode with 5wt. PPy in PVDF-PC-EC-LiClO$_4$ electrolyte showed good capaity with cycling. The discharge capacity of LiMnO$_2$-PAn with wt.% DMcT was 80 and 130 mAh/g at 1st and 12th cycle, respectively. The capacity of LiMnO$_2$-PAn composite with 2 wt.% DMcT was higher than that of LiMnO$_2$-PAn composite.mposite.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.