• Title/Summary/Keyword: organic electrolyte

Search Result 273, Processing Time 0.024 seconds

Market and Technology Analysis for Organic Electrolyte Additive of Lithium Battery (이차전지 유기 전해질 첨가제 시장 및 기술 분석)

  • Lee, Jongtaik
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.407-408
    • /
    • 2014
  • 유기 전해액 성능에 따라 고에너지 밀도, 장수명, 안전성의 특징에 영향을 미치므로 전해액 첨가제에 대한 연구가 활발하게 진행되고 있다. 국내외적으로 각각 7.7%, 6.2%의 연평균 성장률을 가질 것으로 예상되고 있다. 전해액을 포함한 관련 소재는 일본을 중심으로 성장해 왔으나, 최근 국내 이차전지 산업 발전에 따라 원천 기술 확보를 통한 주요 소재 국산화 대체가 시급하다. 이에 따라, 파낙스이텍, 솔브레인, 천보 등을 중심으로 국내 기업의 전해칠 첨가제 개발이 활발히 진행 중이다.

  • PDF

Characterization of Porous Poly(vinylidene fluoride)/Poly(ethylene carbonate) Membranes for Polymer Electrolytes of Lithium Secondary Batteries (리튬 이차전지 고분자 전해질용 다공성 Poly(vinylidene fluoride)/Poly(ethylene carbonate) 막의 특성 연구)

  • Jeon, Jae-Deok;Kwak, Seung-Yeop
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.69-72
    • /
    • 2004
  • So far the most practical polymer electrolytes are gel systems, which contain a polymeric matrix, a lithium salt, and aprotic organic solvents. This has met with success but has had disadvantages that the addition of solvents promotes deterioration of the electrolyte's mechanical properties and increases its reactivity towards the lithium metal anode.[1](omitted)

  • PDF

ORGANIC - INORGANIC COMPOSITE MEMBRANE FOR POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Shul, Yong-Gun;Kim, Hyun-Jong;Ahn, Ji-Eun;Han, Hak-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.37-40
    • /
    • 2003
  • Mesoporous zeolite - heteropolyacid-polymer hybrid membrane was prepared by sol-gel processes to make a proton conducting membrane. The crystallinity of mesoporous zeolite in composite membrane was increased with contents of heteropolyacid. Proton conductivity obtained from impedance measurements increases with contents of heteropolyacid, about 10$^{-3}$ S/cm in ca. 1.5 Wt% heteropolyacid.

  • PDF

PLR (Plastic Lithium Rechargeable) Batteries using Nanoscale Materials : A Convenient Source of Electrical Energy for the Future?$\dag$

  • G. Campet;N. Treuil;A. Poquet;S. J. Hwang;C. Labrugere;A. Deshayes;J. C. Frison;J. Portier;J. M. Reau;J. H. Choy
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.885-892
    • /
    • 1999
  • This communication describes the synthesis of : (i) non-toxic and low cost nanocrystalline electrode materials, which can be prepared advantageously at low temperature ; (ii) highly conductive electrolyte membranes formed by the nano-encapsulation within a poly(acrylonitrile)-based polymer matrix of a solution of LiPF6 in organic solvants. The performances of rechargeable PLR (Plastic Lithium Rechargeable) batteries using the above mentioned components are presented.

Effect of Inorganic Coagulants on the Performance of Electro-Chemical Treatment Process Treating Hospital Wastewater (병원폐수의 전기화학적 처리시 무기응집제 주입 효과에 관한 연구)

  • Jeong, Seung-Hyun;Jeong, Byung-Gon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.709-716
    • /
    • 2011
  • Effect of inorganic coagulants dosing on the performance of electro-chemical process was studied when treating hospital wastewater having low electrolyte concentration. It is thought that adding inorganic coagulants caused increase in concentration of electrolyte and this caused increase in free chloride concentration and consequently, caused increase in indirect oxidation effect. Thus, COD removal efficiencies more than doubled in percentage terms at the 2 hrs of reaction time and current density of $1.76A/dm^2$ compared with the results obtained from the parallel experiments without adding inorganic coagulants. T-N removal efficiencies approximately doubled in percentage terms at the 2 hrs of reaction time and 700 ppm of coagulants addition and applied current density of $1.76A/dm^2$ due to the increase of free residual chlorine such as HOCl caused by increase of electrolyte concentration through the addition of inorganic coagulants. Under the same experimental condition, more than 90% of T-P removal efficiencies was obtained. The reason can be explained that increase of chemical adsorption rate between phosphate and insoluble metal compounds caused by dissolved oxygen generated from anode by the increased electrolyte concentration through inorganic coagulants addition make a major role in improving T-P removal efficiencies. It can be concluded that inorganic coagulants addition as the supplemental agent of electrolyte is effective way in improving organic and nutrient salt removal efficiency when treating hospital wastewater having low electrolyte concentration.

Performance Evaluation of Aqueous Redox Flow Battery using Quinone Redox Couple Dissolved in Ammonium Chloride Electrolyte (염화암모늄 전해질에 포함된 퀴논 레독스 활물질 조합을 이용한 수계 레독스 흐름 전지 성능 평가)

  • Lee, Wonmi;Chung, Kun Yong;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.239-243
    • /
    • 2019
  • In this study, anthraquinone-2,7-disulfonic acid (2,7-AQDS) is used as negative active material and Tiron is used as positive active material for aqueous redox flow battery (RFB). In previous results that used the 2,7-AQDS and Tiron, sulfuric acid ($H_2SO_4$) was a supporting electrolyte. However, in this study, ammonium chloride ($NH_4Cl$) is suggested as the electrolyte for the first time. By changing the supporting electrolyte from $H_2SO_4$ to $NH_4Cl$, the cell voltage of RFB is improved from 0.76 V to 1.01 V. To investigate the effect of $NH_4Cl$ supporting electrolyte of the performance of RFB, the full-cell tests of RFB using 2,7-AQDS and Tiron that are dissolved in $NH_4Cl$ supporting electrolyte are carried out, while cut-off voltage range is a main parameter to determine their performance. When the cut-off voltage range is 0.2~1.6 V, the hydrogen evolution occurs during charging step. To address the side reaction effect, the cut-off voltage range is changed to 0.2~1.2 V. When the revised cut-off voltage range is used and the current density of $40mA/cm^2$ is applied, hydrogen evolution is not observed and the optimal RFB shows the charge efficiency of 99% and discharge capacity of 3.3 Ah/L at 10cycle.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

Polymeric Gel Electrolytes for Electric Double Layer Capacitors (전기이중층 캐패시터에 관한 폴리머 겔 전해액)

  • Morita, Masayuki;Qiao, Jin-Li
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.141-144
    • /
    • 2003
  • Proton conducting polymeric gels as the electrolytes of electrochemical capacitors have been prepared by two different methods: 1) swelling a polymethacrylate-based polymer matrix in aqueous solutions of inorganic and organic acids, and 2) polymerizing complexes of anhydrous acids and prepolymers with organic plasticizer. The FT-IR spectra strongly suggest that the carbonyl groups in the polymer matrix interact with protons from the doped acids. High ionic (proton) conductivity in the range of $6\times10^{-4}-4\times10^{-2}\;S\;cm^{-1}$ was obtained at room temperature for the aqueous gels. The non-aqueous polymer complexes showed rather low ionic conductivity, but it was about $10^{-3}\;S\;cm^{-1}\;at\;70^{\circ}C$ for the $H_3PO_4$ doped polymer electrolyte. The mechanisms of ion (proton) conduction in the polymeric systems are discussed.

Diagnosis of Trace Toxic Uranium Ions in Organic Liver Cell

  • Ly, Suw Young;Pack, Eun Chul;Choi, Dal Woong
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.117-120
    • /
    • 2014
  • Uranium is toxic and radioactive traces of it can be found in natural water and soils. High concentrations of it in biological systems cause genetic disorders and diseases. For the in vivo diagnosis, micro and nano range detection limits are required. Here, an electrochemical assay for trace toxic uranium was searched using stripping voltammetry. Renewable and simplified graphite pencils electrode (PE) was used in a three-electrode cell system. Seawater was used instead of an electrolyte solution. This setup can yield good results and the detection limit was attained to be at $10{\mu}gL^{-1}$. The developed skill can be applied to organic liver cell.

Dispersion of Aqueous $Al_2O_3$Suspensions with Electrolytes; Influence of the Counter Ion

  • Cecile Pagnoux;Richard Laucournet;Thierry Chartier;Baumard, Jean-Francois
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.280-285
    • /
    • 2000
  • The electrolyte, $(HO)_2C_6H_2(SO_3Na)_2H_2O $(Tiron), disperses efficiently alumina powder in aqueous media and stable suspensions with 60 vol% solid loading can be prepared. The strong adsorption of this additive is mainly due to the ability of the molecule to form chelate rings with the particle surface but electrostatic interactions between the surface charge and the anionic dispersant strongly influence the amount of Tiron adsorbed. By using a cationic exchange route to substitute the counter ion which neutralizes the sulfonate groups, new molecules of dispersant have been prepared, either with mineral cations as $Li^+,\; Na+^,\; NH_4^\;+$, or with organic cations as counter ion but organic counter ions lead to less to less viscous suspensions than $Na^+$ in particular when the number of carbon atoms of the aliphatic chain increases from 1 to 3.

  • PDF