• Title/Summary/Keyword: organic content

Search Result 3,930, Processing Time 0.027 seconds

Effects of Organic Matter and pH on Chromium Oxidation Potential of Soil

  • Chung, Jong-Bae;Eum, Jin-Sup
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.346-351
    • /
    • 2001
  • Oxidation of Cr(III) to Cr(VI) can increase availability and toxicity of chromium. In this study, possible mechanisms by which pH and organic matter can control the chromium oxidation and reduction in soil system were examined using four soils of different pHs and organic matter contents. Reduction of Mn-oxides occurred in the soils of higher organic matter content (4.0%), but Mn-oxide was quite stable during the incubation in the soil of pH 7.0 and 0.5% organic matter content. Manganese oxides can be reductively dissolved at lower pH and higher organic matter conditions. The soil of pH 7.0 and 4.0% organic matter content showed the highest Cr-oxidation potential. Reduction of soluble Cr(VI) was observed in all the soils examined. The most rapid reduction was found in soil of pH 5.5 and 4.0% organic matter content, but the reduction was slow in soil of pH 7.0 and 0.5% organic matter content. Thus, the reductive capacity of organic matter added soils was much higher as compared to other two soils of lower organic matter content. In all the soils examined, the reductive capacity of soluble chromium was much higher than the oxidative capacity. Organic matter was found to be the most important controlling factor in the chromium oxidation and reduction. Reduction of Cr(VI) to Cr(III) could be a potentially useful remediation or detoxification process, and availability and toxicity of chromium in soil would be controlled by controlling organic matter content and pH of the soils.

  • PDF

Chemical Properties in the Soils of Reclaimed and Natural Tidelands of Southwest Coastal Area of Korea (I) - Distribution of Heavy Metal Fractions - (우리나라 서남해안 간척지 및 간석지 토양의 화학적 특성 (I) - 중금속 오염물질의 형태별 함량 분포 -)

  • Cho, Jae-Young;Koo, Ja-Woong;Son, Jae-Gwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.3-10
    • /
    • 2006
  • The chemical fractions of heavy metals were investigated in the soils of reclaimed and natural tidelands of southwest coastal area of Korea. The distribution pattern of each heavy metal in different fractions was in the order: 1) Cu : organic bound > organic complex > residual > exchangeable = water soluble. 2) Cr : residual > organic bound > organic complex > water soluble > exchangeable. 3) Pb : organic bound > residual > organic complex > water soluble > exchangeable. 4) Cd residual > organic bound > organic complex > water soluble = exchangeable. 5) Zn : organic bound > residual > organic complex > water soluble > exchangeable. The content of residual Zn showed positive correlation with organic matter content but organic bound Zn showed negative correlation with CEC. The content of residual and exchangeable Cd showed highly positive correlation with organic matter content but residual, organic bound, and exchangeable Cd showed negative correlations with CEC. Water soluble Pb showed positive correlation with CEC but organic bound Pb showed negative correlation with CEC.

A Simple Phenol‐Indole Dye as a Chromogenic Probe for the Ratiometric Determination of Water Content in Organic Solvents

  • Kim, Kyoung- Nam;Song, Ki-Cheol;Noh, Jae-Hyun;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.197-200
    • /
    • 2009
  • A simple dye having phenol and indole moieties was synthesized and its chromogenic signaling behaviors for the determination of water content in organic solvents were investigated. The compound revealed a pronounced chromogenic behavior in response to the variation of water content in water miscible aprotic organic solvents of acetone, acetonitrile, THF, and dioxane. Significant red shifts and changes in absorption spectra allowed a ratiometric analysis of the signaling behavior. The chemosensing behaviors were particularly pronounced in water content in less than 10% that is suitable for the application of the compound as a probe for the determination of water content in binary aqueous organic solutions having lower water content.

Influence of Organic Matter and Temperature on the Sorption of Volatile Organic Compounds on Soil (토양 흡착에 대한 유기탄소와 온도의 영향)

  • 김희경
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.57-59
    • /
    • 1998
  • The headspace method has been acknowledged as a cost-effective and convenient method to analyze volatile organic compounds(VOCs) in soil. The headspace analysis is based on equilibrium partitioning of VOCs among water, air and soil in a closed system. However, the headspace method cannot be applied to soils where most of the VOCs remain sorbed even at high temperature. In this study, it was investigated how the sorption characteristics of VOCs varied with soil with different organic carbon contents and temperature. This study showed that all the VOCs were volatilized, not sorved, only in the soil with 5% organic carbon at 45$^{\circ}C$ or higher. Some fraction of VOCs remained in soil with 8% organic carbon at $65^{\circ}C$ of higher. Most of the VOCs remained sorbed in soil with 12% organic content even at 95$^{\circ}C$. This result suggested that the headspace method can be applied only to soils with little organic carbon content (less than 5%). In this case, 45$^{\circ}C$ seems to be high enough to volatilize all the VOCs from soil. Large particles still showed a significant sorption capacity for VOCs from soil. Large Particles still showed a significant sorption capacity for VOCs despite of their low level of organic carbon content. It was also shown that the organic carbon sorption coefficients (Koc) of VOCs varied with soils with different organic carbon content. This suggests that not only the organic matter content of soil but also the property of the organic matter in soil influence the sorption of VOCs to soil.

  • PDF

Estimation of Nitrogen Mineralization of Organic Amendments Affected by Nitrogen Content in Upland Soil Conditions (밭토양 조건에서 질소함량별 유기자원의 질소 무기화율 추정)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.262-268
    • /
    • 2019
  • BACKGROUND: To investigate mineralization characteristics of organic resources in the soil, five materials (rice straw, cow manure sawdust compost, microorganism compost, mixed oil-cake, and amino acid fertilizer) were treated according to the nitrogen content, and an indoor incubation experiment was conducted for 128 days. The results of this analysis were applied to determine the nitrogen mineralization pattern of these organic resources. METHODS AND RESULTS: During the constant temperature incubation period, the nitrogen net mineralization rate of the organic resources was the highest in the amino acid fertilizer with the highest nitrogen content, and the lowest in the rice straw with the lowest nitrogen content. A positive correlation (0.96) was observed between the potential nitrogen mineralization rate and total nitrogen content. The mineralization rate constant, k, was negatively correlated with the organic matter (-0.96) and carbon content (-0.97). The nitrogen mineralization rate during the first cropping season, as estimated by the model, was 6.6%, 11.6%, 30.9%, 70.7%, and 81.0% for the rice straw, the cow manure sawdust compost, the microorganism compost, the mixed oil-cake, and the amino acid fertilizer, respectively. CONCLUSION: The nitrogen mineralization rate varies depending on the type of organic resources or the nitrogen content; thus, it can be used as an index for determining the nitrogen supply characteristics of the organic resource. Organic resources such as compost with low nitrogen content or those undergoing fermentation contain organic nitrogen. Organic nitrogen is stabilized during the composting process. Therefore, as the nitrogen mineralization rate of these resources is lower than that of non-fermented organic resources, it is desirable to use the fermented organic materials only to improve soil physical properties rather than to supply nutrients for the required amount of fertilizer.

Conversion Factor for Determinating Carbon Contents from Organic Matter Contents in Composts by Ignition Method (회화법으로 측정한 퇴비중 유기물 함량을 탄소 함량으로 변환하기 위한 환산계수 결정)

  • Nam, Jae-Jak;Cho, Nam-Jun;Jung, Kwang-Yong;Lee, Sang-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.380-383
    • /
    • 1998
  • For the evaluation of the quality of compost, the determination of C/N ratio is mandatory in Korea. Accordingly it is necessary to measure the total carbon content of compost for the quality control of composts. It is, however, not easy to measure the carbon content of compost. For practical purposes total carbon content of compost can be estimated from the total organic matter content, which is estimated by way of ignition loss. For this, it is necessary to establish the factor for conversion of organic matter into carbon. We studied the relationship between the organic matter content determined by ignition method and total carbon content measured by elemental analyzer using 160 compost sample collected from the markets. The relationship between the carbon content and organic matter in those composts was found to be "y(% carbon)=1.995+0.484%(% organic matter)"($r^2=0.943$). This result suggests that total carbon contents of composts can be estimated from the organic matter content.

  • PDF

A Study on the Measurement of Moisture Content in the Organic Soils (유기질토의 함수비 측정에 관한 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu;Ryu, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.29-37
    • /
    • 2013
  • Organic soils are widely distributed at Youngdong areas in Kangwon prefecture and Jeonbuk area. Such organic soils usually consist of undecomposed fiber materials. It is difficult to exactly measure the water content of such organic soils because some organic materials may decompose at $110^{\circ}C$ in drying oven. In this study, both drying oven and microwave oven methods are used to measure the water content of organic soils. Three different levels of oven temperature, $60^{\circ}C$, $80^{\circ}C$, and the standard temperature of $110^{\circ}C$, were used to measure the water content of organic soils in the 1st, 2nd, and 3rd day. The water content by microwave oven was measured for two different sample masses (30, 60 g) with five different measuring times (3, 6, 9, 12, 15 min.). As the temperature increased, the water content of organic soils increased due to the decomposition of organic materials in soils. The water content of some soils increased up to 2 times as the temperature was increased from $60^{\circ}C$ to $110^{\circ}C$. However, the water content was not changed after the 1st day, regardless of drying oven temperature and soil types. The water content by microwave oven became constant after 12 min. for the 30 g sample and 15 min. for the 60 g sample used. The measured water content by microwave oven was similar to that measured by drying oven at $60^{\circ}C$.

Optimum Dosage of Quicklime to Livestock Wastes in Organic Fertilizer Process (축산분뇨의 유기질 비료화에 미치는 생석회 주입량의 영향)

  • Kim,Jeong-Bae;Park,Jeong-Im
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.365-371
    • /
    • 2001
  • The optimum dosage of quicklime in producing organic fertilizer using livestock wastes vith a greater than 80% water content was analysed. After one day had elapsed to allow for the organic fentilizer to dry, the quicklime dosage and the composition of the organic fertilizer were analysed. Any from done to the organic fertilizer was also assessed. The amount of the quicklime required to stabilize livestock wastes was determined by water content of livestock wastes. For J farm(slurry style) of which livestock wastes have 94.6% of water concentration, less than 3% of total amount of livestock wastes, for H farm (scraper style) of which livestock wastes have 85% of water concentration, less then 4% of total livestock wastes and Y farm(traditional style) of which livestock wastes have 80% of water concentration, less then 5% of total livestock wastes. Generally, in order to pack the organic fertilizer, water containing quicklime0stabilized livestock wastes should be less than 35%. It takes 9 days to keep this water content for the wastes from H and Y farms(less than 85% in water content), and 12 days for the wastes from J (94.6% in water content). According to the classification standard for compost constitution by Higgins, the crude fertilizers from all 3 farms had high grade $K_2O$ and CaO, the middle grade T-N and middle or low grade $P_2O_5$. Stabilization by quicklime is known to inhibit bacterial decomposition of organic matter and the activity of pathogenic organisms. In this study, more then 99.99% of coliform group, fecal group and viable cell count were reduced. Our results indicate that livestock wastes of greater 80% water content could be used to produce organic fertilizer without the addition of a material for moisture control.

  • PDF

Nutritive Quality of the Crude Organic Fertilizer Produced with Coastal Aquaculture-Ground Bottom Sediments, Organic Wastes and Alkaline Stabilizers (유기성 폐기물과 알칼리 안정화제가 첨가된 연안 양식장 퇴적물 조비료의 영양성분 조성)

  • 김정배;강창근;이근섭;박정임;이필용
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1291-1298
    • /
    • 2002
  • To utilize coastal aquaculture ground bottom sediment in which concentrations of harmful pollutants are low and organic content is high as an organic fertilizer alkaline stabilizers such as CaO, Oyster shell, Mg(OH)$_2$ were added to the bottom sediment organic additives of livestock or food wastes. Nutritive qualities of crude fertilizers were measured to examine effects of alkaline stabilizers and organic waste additions. The Mg(OH)$_2$-added crude fertilizer had significantly lower total carbon(T-C) and nitrogen(T-N) content, reflecting the dilution effect due to great amount of Mg(OH)$_2$ addition. However, the addition of oyster shell had no significant effect on the T-C and T-N content of the fertilizer. $P_2O_5$ and $K_2$O content was considerably higher in the mixed sample of aquaculture ground bottom sediments and livestock wastes than in the mixture of the sediments and food wastes, resulting from higher $P_2O_5$ and $K_2$O content in livestock wastes. Addition of Mg(OH)$_2$ increased the content of MgO In the crude fertilizer but significantly reduced the content of other nutritive elements such as $P_2O_5$, $K_2$O and CaO. Addition of oyster shell as an alkaline stabilizer seemed to have the advantage of saving time and expenses far dryness due to its role as a modulator of water content. Moreover, additions of effect Mg(OH)$_2$ decreased the concentrations of heavy metals in the fertilizer by the dilution while additions of oyster shell had no influence on heavy metal concentrations in the fertilizer.

Fruit Quality, Antioxidant Capacity and Nutrients between Organic and Conventional kiwifruit in Korea

  • Cho, H.;Cho, J.;Cho, Y.;Park, J.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.225-229
    • /
    • 2011
  • Organic kiwifruits were smaller fruit size but had higher magnesium and dry matter content than conventional, meanwhile, fruit soluble solid content was similar to conventional. There were no significant difference in polyphenol contents and antioxidative capacity between organic and conventional although there were considerable variations among sample orchards. Several minerals were also similar levels in both systems.