• Title/Summary/Keyword: organic amendment

Search Result 143, Processing Time 0.023 seconds

Integrated Management of Foot Rot of Lentil Using Biocontrol Agents under Field Condition

  • Hannan, M.A.;Hasan, M.M.;Hossain, I.;Rahman, S.M.E.;Ismail, Alhazmi Mohammed;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.883-888
    • /
    • 2012
  • The efficacy of cowdung, Bangladesh Institute of Nuclear Agriculture (BINA)-biofertilizer, and Bangladesh Agricultural University (BAU)-biofungicide, alone or in combination, was evaluated for controlling foot rot disease of lentil. The results exhibited that BINA-biofertilizer and BAU-biofungicide (peat soil-based Rhizobium leguminosarum and black gram bran-based Trichoderma harzianum) are compatible and have combined effects in controlling the pathogenic fungi Fusarium oxysporum and Sclerotium rolfsii, which cause the root rot of lentil. Cowdung mixing with soil (at 5 t/ha) during final land preparation and seed coating with BINA-biofertilizer and BAU-biofungicide (at 2.5% of seed weight) before sowing recorded 81.50% field emergence of lentil, which showed up to 19.85% higher field emergence over the control. Post-emergence deaths of plants due to foot rot disease were significantly reduced after combined seed treatment with BINA-biofertilizer and BAU-biofungicide. Among the treatments used, only BAU-biofungicide as the seed treating agent resulted in higher plant stand (84.82%). Use of BINA-biofertilizer and BAU-biofungicide as seed treating biocontrol agents and application of cowdung in the soil as an organic source of nutrient resulted in higher shoot and root lengths, and dry shoot and root weights of lentil. BINA-biofertilizer significantly increased the number of nodules per plant and nodules weight of lentil. Seeds treating with BAU-biofungicide and BINA-biofertilizer and soil amendment with cowdung increased the biomass production of lentil up to 75.56% over the control.

Decision of Available Soil Depth Based on Physical and Hydraulic Properties of Soils for Landscape Vegetation in Incheon International Airport

  • Jung, Yeong-Sang;Lee, Hyun-Il;Jung, Mun-Ho;Lee, Jeong-Ho;Kim, Jeong-Tae;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.522-527
    • /
    • 2015
  • Decision of available soil depth based on soil physical and hydraulic properties for the $3^{rd}$ Landscape Vegetation Project in the Incheon International Airport was attempted. The soil samples were collected from the 8 sites at different depths, 0-20 and 20-60cm, for the three project fields, A, B, and C area. Physical and chemical properties including particle size distribution, organic matter content and electrical conductivity were analyzed. Hydrological properties including bulk density and water holding capacity at different water potential, -6 kPa, -10 kPa, -33 kPa, and -1500 kPa were calculated by SPAW model of Saxton and Rawls (2006), and air entry value was calculated by Campbell model (1985). Based on physical and hydrological limitation, feasibility and design criteria of soil depth for vegetation and landfill were recommended. Since the soil salinity of the soil in area A area was $19.18dS\;m^{-1}$ in top soil and $22.27dS\;m^{-1}$ in deep soil, respectively, landscape vegetation without amendment would not be possible on this area. Available soil depth required for vegetation was 2.51 m that would secure root zone water holding capacity, capillary fringe, and porosity. Available soil depth required for landscape vegetation of the B area soil was 1.51 m including capillary fringe 0.14 m and available depth for 10% porosity 1.35 m. The soils in this area were feasible for landscape vegetation. The soil in area C was feasible for bottom fill purpose only due to low water holding capacity.

Determining Optimum Condition of Acid Hydrolysis Technique for Food Waste Reduction

  • Kim, Eui Yeong;Choi, Young Gwang;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.606-614
    • /
    • 2017
  • Amount of food waste has been increased annually in Korea and re-use of food waste as a fertilizer or soil amendment in agricultural field has been studied. Therefore, main purpose of this research was to determine optimum condition of hydrolysis for food waste management. Three different solvents, HCl, $H_2SO_4$, and KOH, were used and varied concentration at the range of 10~30% and hydrolysis time at the range of 1~3 hours were evaluated. In general, reduction rate of food waste was increased when concentration of solvent and hydrolysis time was increased except when KOH was used. Among different solvents, concentration, and hydrolysis time, the highest reduction rate (97.79%) was observed when 30% of HCl was used with temperature of $140^{\circ}C$ at 2 hours of hydrolysis time. In addition, neutralization effect of alkalic materials, shell waste (SW) and egg shell (ES) was evaluated. Both SW and ES increased pH of finished acid hydrolysis solution up to 7.61 indicating that neutralization effect of SW and ES was sufficient for finished acid hydrolysis solution. Contents of organic matter was also at the range of 10.7~13.04% and 5.53~8.04% respectively when HCl and $H_2SO_4$ were used as solvent. Overall, hydrolysis technique can be used to manage food waste with selected optimum condition in this study and characteristics of finished hydrolysis solution after neutralization might be suitable for soil amendments.

Organic amendment-driven removal and speciation of metals using wormwood in two contrasting soils near an abandoned copper mine

  • Ro, Hee-Myong;Choi, Hyo-Jung;Yun, Seok-In;Park, Ji-Suk
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.775-786
    • /
    • 2018
  • To test the hypothesis that humic acid (HA), anaerobically digested pig slurry filtrate (APS), and their combination would differently affect the chemical speciation and extractability of metals (cadmium, copper, and zinc) and their uptake by plants, we conducted a pot experiment using wormwood in two texturally contrasting soils (sandy loam and clay loam) collected from a field near an abandoned Cu mine. Four treatments were laid out: HA at $ 23.5g\;kg^{-1}$ (HA), APS at $330mL\;kg^{-1}$ (APS), HA at $ 23.5g\;kg^{-1}$ and APS at $330mL\;kg^{-1}$ (HA + APS), and a control. Each treatment affected the chemical speciation and mobility of the metals, and thereby resulting in variable patterns of plant biomass yield and metal uptake. The APS supported plant growth by increasing nutrient availability. HA supported or hindered plant growth by impacting the soil's water and nutrient retention capacity and aeration, in a soil texture-dependent manner, while consistently enhancing the immobilization of heavy metals. Temporal increases in whole-plant dry matter yield and metal accumulation suggested that the plants were capable of metal hyperaccumulation. The results were discussed in terms of the mobility of metals and plant growth and corroborated by the $^{15}N$ recovery of soil- and plant-N pools under H and HS treatments. Therefore, for effective phytoremediation of polluted soils, an appropriate combination of plant growth promoters (APS) and chelating agents (HA) should be predetermined at the site where chemical stabilization of pollutants is desired.

Responses of Soil Rare and Abundant Sub-Communities and Physicochemical Properties after Application of Different Chinese Herb Residue Soil Amendments

  • Chang, Fan;Jia, Fengan;Guan, Min;Jia, Qingan;Sun, Yan;Li, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.564-574
    • /
    • 2022
  • Microbial diversity in the soil is responsive to changes in soil composition. However, the impact of soil amendments on the diversity and structure of rare and abundant sub-communities in agricultural systems is poorly understood. We investigated the effects of different Chinese herb residue (CHR) soil amendments and cropping systems on bacterial rare and abundant sub-communities. Our results showed that the bacterial diversity and structure of these sub-communities in soil had a specific distribution under the application of different soil amendments. The CHR soil amendments with high nitrogen and organic matter additives significantly increased the relative abundance and stability of rare taxa, which increased the structural and functional redundancy of soil bacterial communities. Rare and abundant sub-communities also showed different preferences in terms of bacterial community composition, as the former was enriched with Bacteroidetes while the latter had more Alphaproteobacteria and Betaproteobacteria. All applications of soil amendments significantly improved soil quality of newly created farmlands in whole maize cropping system. Rare sub-communitiy genera Niastella and Ohtaekwangia were enriched during the maize cropping process, and Nitrososphaera was enriched under the application of simple amendment group soil. Thus, Chinese medicine residue soil amendments with appropriate additives could affect soil rare and abundant sub-communities and enhance physicochemical properties. These findings suggest that applying soil composite amendments based on CHR in the field could improve soil microbial diversity, microbial redundancy, and soil fertility for sustainable agriculture on the Loess Plateau.

Effect of Soil Organic Amendment and Water-Absorbing Polymer on Growth Characteristics in Poa pratensis L. (Poa pratensis L. 에서 유기질 토양개량재 및 수분 중합체가 잔디생육에 미치는 효과)

  • Kim, Kyoung-Nam
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.317-330
    • /
    • 2009
  • Research was initiated to investigate germination vigor, number of leaves, plant height and turfgrass density. A total of 18 treatment combinations were used in the study. Treatments were made of soil organic amendment(SOA), sand, and water-absorbing polymer. Germination vigor, leaf number, plant height and turfgrass density were evaluated in Kentucky bluegrass(KB) grown under greenhouse conditions. Significant differences were observed in germination vigor, leaf number, plant height and turfgrass density among 18 mixtures of SOA and polymer. Highest germination rate was associated with mixture of SOA 20% + sand 80% + polymer 0%, resulting in 56.3% for KB. Number of leaves at 60 DAS(days after seeding) were greater with KB over PR, while plant height higher with PR over KB. Leaf number increased with SOA, being SOA 20% > SOA 100% > SOA 10% and with polymer from 0 to 12%. Plant height was greatest with SOA 20% and lowest with SOA 100%. Greater density was observed with PR rather than KB due to longer plant height. Turf density was best under SOA 10% and poorest under SOA 100% in KB. A further research would be required for investigating the individual effect of K-SAM, Ca, perlite on the turf growth characteristics.

Effect of Electron Donor on the Reductive Dechlorination of PCE in Groundwater Using Biobarrier: Batch Experiment (생물벽체를 이용한 지하수내 PCE의 환원성 탈염소화시 전자공여체의 영향: 회분식 실험)

  • HwangBo, Hyun-Wook;Shin, Won-Sik;Kim, Young-Hun;Song, Dong-Ik
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.22-37
    • /
    • 2006
  • The applicability of biobarrier or in situ microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through batch microcosm study. The efficiency and rates of reductive dechlorination of tetrachloroethylene (PCE) are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (or worm casting) and peat as a biobarrier medium. The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{12}$ on the reductive dechlorination was investigated. In the absence of biobarrier medium (adsorbent), addition of electron donors stimulated the dechlorination rate of PCE compared to the control experiment (i.e., no electron donor added). Among the treatments, addition of lactate or lactate/benzoate as hydrogen donor exhibited the highest dechlorination rate ($k_1=0.0260{\sim}0.0266\;day^{-1}$). In case of using vermicompost as a biobarrier medium, amendment of lactate/benzoate exhibited the highest dechlorination rate following with a pseudo-first-order degradation rate constant of $k_1=0.0849\;day^{-1}$. In contrast, when Pahokee peat was used as a biobarrier medium, either butyrate or lactate addition exhibited the highest dechlorination rate with $k_1$ values of 0.1092 and $0.1067\;day^{-1}$, respectively. The results of this study showed the potential applicability of in situ biobarrier technology using vermicompost or peat as a barrier material for the remediation of groundwater contaminated with chlorinated solvent.

Effect of Organic Amendments on Rhizosphere Microflora of Tomato Plant (유기질 비료 시용이 토마토 근권 미생물 상에 미치는 영향)

  • Yoo, Sung-Joon;Whang, Kyung-Sook;Kim, Sun-Ik;Chang, Ki-Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.297-302
    • /
    • 1996
  • The effect of application rate of pig or chicken manure on the seasonal change of tomato(Minicarol) rhizosphere microflora was investigated by field experiment were surface soil(16cm) mixed with manures 1 weeks before transplanting. 1. Rhizobacteria population of control plot decreased 5 weeks after transplanting(WAT) than 1 WAT and 1.5~2 times higher colony counting was found in DNB(Diluted nutrient broth medium) than NB(Nutrient broth medium) at 15 WAT. 2. Rhizobacteria population at 1 WAT inereased in NB medium with the application rate of both manures but decreased in DNB with chicken manure. Colony counting in NB of 60 and 120 mg/ha treatment was 100 times higher than that of the control. However, rhizobacteria in DNB at 15 WAT(harvest stage) was much higher than that of NB. 3. Application rate did not affect fungi population 1 WAT in pig manure but decresed in chicken manure. At 15 WAT fungi population was 2 times higher than 1 WAT with chieken manure and highest in 30 mg/ha but with pig manure decreased with rate than the control. 4. Actinomycetes population at 1WAT was not different among pig manure rates and decreased with chicken manure than control. At 15 WAT population increased in all manure rates. especially in 10 mg/ha pig manure and 30 mg/ha chicken manure 4 times that 1 WAT.

  • PDF

Physicochemical changes and plant growth effect on composting of spent mushroom substrates (버섯수확후배지의 퇴비화에 따른 물리 화학적 변화 및 식물 생육 효과)

  • Song, Ji-Min;Phong, Nguyen Hong;Kim, Ja-Yoon;Kang, Dae-Sun;Yu, Jeong-Yeon;Kang, Hee-Wan
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.268-273
    • /
    • 2020
  • This study aimed to assess the feasibility of composting spent mushroom substrate (SMS) materials of Lentinula edodes (Le), Hericium erinaceus (He), and Pleurotus ostreatus (Po). The different SMSs were composted for 7 to 10 days at high temperatures over 50℃; the composting procedure was completed in 30 days. A maturity test was conducted using the radish seed germination index and CoMMe-100. The composted SMS (CSMS) from Le and He showed gemination indices of 130% and 81%, respectively, that satisfied the criteria of maturity standard (gemination index over 70%) and the CoMMe-100 analysis. The physicochemical changes of CSMSs included an increase in the pH range from 4-5 to 6-7, slight reduction in the EC to 1-1.4 dS/m, and an organic content of 36.9% in LeCSMS. In LeCSMS, the contents of N, P, and K were 1.2%, 2.3%, and 0.77%, respectively, and heavy metals were detected below the standard value in all CSMSs; the Ca and Mg contents in the CSMSs were increased from 30% to 60% when compared to those in the SMSs. The C/N ratio (from 26-33) in LeSMS and HeSMS decreased to 15.3-15.9 in CSMSs. The growth effect of LeCSMS treatment on pepper seedlings was 60% higher than that in the control groups, one of which was treated with commercial organic compost; the former showed a superior growth effect on the leaf width, leaf length, and leaf number compared to other control groups. In conclusion, LeCSMS and HeCSMS could be utilized as compost resources capable of efficient soil amendment and plant growth promotion.

Effect of Rice Straw and Woodchip Application on Greenhouse Soil Properties and Vegetable Crops Productivity (볏짚과 파쇄목 시용이 시설하우스 토양 성질과 작물 수량에 미치는 영향)

  • Seo, Young-Ho;Lim, Soo-Jeong;Kim, Seung-Kyeong;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.4-11
    • /
    • 2007
  • There have been increasing concerns about decreasing crop productivity due to salt accumulation in greenhouse soils. The objective of the study was to investigate the impact of rice straw and woodchip application to a salt accumulated greenhouse soil on crop productivity and soil quality. The application of rice straw (RS) and woodchip (W) increased tomato yield and decreased blossom-end rot, and increased yield of Chinese cabbage compared with standard recommended fertilization ($204-103-122kg\;ha^{-1}\;N-P_2O_5-K_2O$ for tomato and $222-64-110kg\;ha^{-1}\;N-P_2O_5-K_2O$ for Chinese cabbage), while less soil residual nitrate, phosphatephosphorus, and potassium. In addition to the organic material application, fertilization reduction based on soil testing may also contribute to relatively low level of soil residual nutrients. Application of the organic material reduced soil bulk density presumably because of improved soil aggregation and structure, and increased biomass C and dehydrogenase activity. In comparison to rice straw, woodchip application resulted in higher crop yield, less amount of soil residual nitrate and lower soil EC, and greater biomass and dehydrogenase activity. The results obtained in this study indicateshowed that woodchip amendment along with reduced fertilization based on soil testing can be one of essential management practices for salt accumulated greenhouse soils.