• Title/Summary/Keyword: ore body

Search Result 103, Processing Time 0.026 seconds

Feasibility of 3D Dipole-Dipole Electrical Resistivity Method to a Vein-Type Ore Deposit (국내 맥상광체조사를 위한 3차원 쌍극자-쌍극자 전기비저항 탐사의 적용성 분석)

  • Min, Dong-Joo;Jung, Hyun-Key;Lee, Hyo-Sun;Park, Sam-Gyu;Lee, Ho-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.268-277
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore deposit survey in literature. Geophysical surveys have been applied to the investigation of both metallic and non-metallic ore deposit. For metallic ore-deposit survey, the 2D electrical resistivity method has been popularly used, because metallic mineral deposits are generally more conductive than surrounding media. However, geological structures are 3D rather than 2D structures, which may lead to misinterpretation in 2D inversion section. In this study, 3D effects are examined for several 3D structures such as a width-varying dyke model and a wedge-shaped model. We also investigate the effects of the direction of survey line. Numerical results show that the width-varying dyke model yields some low resistivity zone in the deep part, which is independent of real ore-body location. For the wedge-shaped model, even though the survey line is located apart from the ore body, the 2D inversion section still shows low resistivity zone in the deep part. When the survey line is not perpendicular to the strike of the ore body, the low resistivity zone is slightly broader but shallower than that obtained along the survey line perpendicular to the strike. For the survey lines that have an angle smaller than $45^{\circ}$ with the strike of the ore body, the inversion results are totally distorted. From these results, we conclude that 2-D survey and interpretation can lead to misinterpretation of subsurface structures, which may be linked to economical loss. Eventually, we recommend to apply 3-D rather than 2-D electrical resistivity survey for ore-deposit survey.

Study on the Metal Ore Deposits of Gyeongsang buk-do Area (경상북도(慶尙北道) 일원(一圓)에 부존(賦存)하고 있는 금속지하자원(金屬地下資源)의 지질광상학적(地質鑛床學的) 연구(硏究))

  • Kim, Y.K.;Lee, J.Y.;Kim, S.W.;Koh, I.S.
    • Economic and Environmental Geology
    • /
    • v.9 no.3
    • /
    • pp.143-156
    • /
    • 1976
  • The Cretaceous metal ore deposits in the Gyeongsang basin of Gyeongsangbuk-do are characterized by the formation of metallogenic provinces which show zonal distribution pattern around Yeonil province where pneumatolytic type is dominated and hydrothermal type are distributed in the order of decreasing temperature type outward. Some Cretaceous granitic rocks include zoned alkali feldspars which reflect rapid variation of $H_2O$ during emplacement and crystallization of the water-saturated granitic magma. The ore deposits are considered to be originated from upward transportation of ore solution from the excess of water exhausted from uprising magma, which seems to be intimately related to the fact that the majority of the ore deposits in Daegu area are cummulated around the granites including zoned alkali feldspars. In order to collect geochemical data necessary for geochemical exploration in the study area, certain trace elements were chosen as pathfinders from monzonite and soil in the vicinity of Dalsung Tungsten Mine by studying the dispersion patterns of trace elements: Ba and Sr show trends to decrease toward ore deposit while Cu, Pb, and Mo increase. Around mining area there are distributed apparently Equisetum arvense Linne and Mentha sachinensis Kudo which may be used as index plants. In the viewpoint of geologic structure, the trends of the ore veins in contact aureole around the Palgongsan granite body correspond with the pre- and syn- plutonism joint pattern in hornfels in the area.

  • PDF

Talc Mineralization in the Middle Ogcheon Metamorphic Belt (II) : Poongjeon Talc Deposit (중부옥천변성대의 활석광화작용에 관한 연구 (II) : 풍전활석광상을 중심으로)

  • Park, Hee-In;Lee, In Sung;Hur, Soon Do;Shin, Dong Bok
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.543-551
    • /
    • 1997
  • Poongjeon talc deposits is emplaced in dolomite and dolomitic limestone of the Cambro-Ordovician Samtaesan Formation. Ore in Poongjeon is low grade talc and the deposit has been known as the contact metasomatic or hydrothermal replacement type related to the intrusion of late Cretaceous granite in this area. X-ray diffraction, electron microprobe analysis, fluid inclusion and stable isotope analysis were utilized to examine the mineralogy of the ore and the origin of the ore fluid. The ore from Poongjeon mine mainly consists of talc and tremolite with minor amount of illite, vermiculite, smectite, and chlorite-vermiculite mixed layer. Occurrence of ore body indicates that the talc-tremolite ore was formed through the replacement by the $SiO_2$-rich hydrothermal fluid along the bedding and dike boundaries, or contact of amphibolite and basic dike with carbonate rocks. The temperature and pressure of the ore forming fluids at the time of the talc mineralization were estimated as $350^{\circ}C$ and 400 bar, respectively, based on the heating and freezing data of the fluid inclusions in quartz from talc-tremolite veins. During the talc-tremolite formation, fluids were divided into $CO_2$-enriched fluid and $CO_2$-poor fluid from $CO_2$ immiscibility (or effervescence). Oxygen isotope values (${\delta}^{18}O$) of the talc-tremolite fall within a range between 12.2 and 12.9‰. Hydrogen isotope values(${\delta}D$) of the ore range from -60 to -85‰ and $H_2O$ contents range from 2.0 to 3.4 wt.%. ${\delta}^{18}O$ and ${\delta}D$ values of talc ore indicate that the hydrothermal fluid involved in talc-tremolite formation was of igneous origin. Oxygen and hydrogen isotopic exchange between talc ore and the surface water was negligible after talc-tremolite ore formation.

  • PDF

Mineralogy and Genesis of the Pyoungan and Daeheung Talc Deposits in Ultramafic Rocks, the Yoogoo Area (초염기성암 기원의 평안 및 대흥활석광상의 성인과 광물화학)

  • Yun, Sang Pil;Moon, Hi-Soo;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.131-145
    • /
    • 1994
  • The Daehung and Pyeongan talc mines are located in the Yoogoo area, Chungcheongnam-Do. These deposits occur as the complex vein type in the ultramafic rocks which intruded Precambrian gneiss. The talc ore formed from sepentinitt: originated from ultramafic rocks but some of those from hornblende gneiss. The talcification processes were considered here on the basis of the mineral assemblages, paragenesis, and geochemistry. It appears that there are five processes in talcification ; serpentine$\rightarrow$talc, phlogopite$\rightarrow$chlorite$\rightarrow$talc, phlogopite$\rightarrow$talc, hornblende$\rightarrow$chlorite$\rightarrow$talc, and hornblende$\rightarrow$talc. Among them, the most dominant alteration path is serpentine to talc in these deposits. EPMA data suggest that there might be interstratified minerals were in between parent mineral and talc such as serpentine and talc, and phlogopite and talc. It can be found that tremolite exists in between the inner and outer most part of talcified serpentinite blocks coated with phlogopite. Some of tremolites has been altered to talc. The quartz veins and carbonate minerals were found in the talc ore zone. It indicates that the hydrothermal solution played an important role in talcification. The hydrothermal alteration occured after sepentinization. Ore zones can be divided into two zones; talc-serpentine zone preserving a pseudormorph of olivine (mesh texture) and talc-phlogopite zone showing talcification from phlogopite directly or through chlorite. It can be concluded that the formation of major talc ore body was due to talcification of serpentinite and phlogopite by hydrothermal solution. A nature of hydrothermal solution was relatively pure water at the beginning of serpentinization, and was getting richer in silica composition. There was a large amount influx of K and AI with hydrothermal solution in the later stage, and increased $P_{CO_{2}}$ also. It suggests that phlogopite formed in later stages as a secondary mineral. So, the major part of the talc ore body was formed from one parents rocks, serpentinite originated from ultramafic rocks, by hydrothermal solutions at several times.

  • PDF

Occurrences of Ilmenite Deposits in Hadong-Sancheong Area (하동-산청 티탄철석 광상의 광체배태양상)

  • Koh, Sang-Mo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.25-37
    • /
    • 2010
  • Ilmenite ore bodies are deposited within the Precambrian anorthosite body distributed in the Hadonggun and Sancheonggun district, Gyeongsangnamdo. This study tries to identify the occurrence of ilmenite ore body in titanium mine area distributed in Wheolheongri, Okjongmyon, Hadonggun and six mining concession areas (Danseong claim no. 64, 65, 74, 75, 84, 85) in Danseongmyon, Sancheonggun. Wheolheongri ilmenite ore body occurs as vein with about 10~50 m width and 100 m length and shows NNE strike and NW dipping. High grade ore with $TiO_2$ 20 wt% in this area is distributed in intercumulated anorthosite and is sheared and brecciated. Ilmenite occurring in this type is commonly associated with hornbelnde. Ilmenite ore bodies distributed in Danseonggun, Sancheongmyon are deposited in layered anorthosite. They occur as stratiform with variable width from several and several tens meters. Ilmenite which is disseminated in the matrix is sheared and elongated. This type shows generally low grade ($TiO_2$ 1.0~6.0 wt%). The ilmenite ore bodies occur as vein and stratiform, and the former shows higher grade than the latter.

Relation of the Skarnized Calcareous Nodules in the Hwajeol Formation and the Deep Concealed Orebody (화절층내 석회질 단괴(團塊)의 스카른화와 심부잠두(深部潛頭) 광체와의 관계)

  • Moon, Kun-Joo
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.335-346
    • /
    • 1991
  • It is observed that calcareous nodules of the Hwajeol Formation are locally skarnized in the Sangdong district, in which the skarn mineralization extends 5 Km westward from the Sangdong mine area to the Hwajeolchi area. After a hidden granite beneath the Sangdong mine was discovered by exploration drillings, the exploration teams of the Sangdong mine and the Korean Mining Promotion Corporation have assumed that the skarn nodule of the Hwajeol Formation was derived from emplacement of a granite in deep place and the occurrence of hidden ore bodies below the skarn, and they have discovered high grades of tungsten orebody in the same horizon of the Sangdong ore body. Mutual genetic relatioships between epidote and garnet may be explained by following chemical reactions $Ca_2FeA_{12}$ $Si_3O_{12}(OH)+CaCO_3=Ca_3(Fe,\;Al)_2$ $SiO_{12}+1/2CO_2+1/2H^+Ca_3FeSi_3O_{12}+SiO_2+CO_2=2CaFeSi_{12}O_6+CaCO_3+1/2O_3$. It is concluded that epidote and garnet are useful as target minerals indicating a potential occurrence of deep seated hidden ore body. Since the epidote may inform the emplacement of the granite, while the garnet in the skarn nodule of the Hwajeol Formation may reflect a strong hydrothermal mineralization taking place from the depth.

  • PDF

Resource Estimation of Ugii Nuur Fe-Mn Occurrence Area, Mongolia (몽골 우기누르 철-망간 산출지 자원량 평가)

  • Lee, Bum Han;Kim, In Joon;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) and Mineral Resources Authority of Mongolia (MRAM) performed test drilling in the right side of Deposit 2 in Ugii Nuur Fe-Mn occurrence area, Mongolia. It was decided to perform the drilling with 65 degree of drilling angle due to the technological limit of low angle drilling and designed to find ore bodies in cores between 50 m and 70 m. Ore bodies were found in lower depths than expected probably due to the folds in the subsurface in three drilling sites other than drilling position 3. Ore body in drilling position 3 was found in the similar depths with the expected depths. In drilling position 1, high Fe bearing ore body (more than 40%) was found between 47.45 and 50 m and between 56.35 and 57.1 m. The rest of ore body in drilling position 1 and ore bodies in other three sites have low Fe contents with about 10% of Fe. In drilling position 1, maximum and average Mn contents are about 10% and 1%, respectively, and in other three sites, average Mn contents are about 0.2%. Whereas Mn contents are low, Fe and Mn contents show very similar variations with varying depths, suggesting that they were moved and concentrated together in the ore genesis process. Proved resources estimated for the ore bodies confirmed by drilling are Fe 231,661 tonne with 11.82% of the average Fe grade. Possible resources supposing that ore bodies of DP-1 and DP-2 are connected and those of DP-3 and DP-4 are connected are Fe 4,415,296 tonne with 11.82% of the average Fe grade. The possibility of development of this area based on the estimated resources is low because the ore grade is low.

Field Study of Zapla Iron Ore Deposit in Argentina (아르헨티나 자플라 철광상 현지 조사 연구)

  • Pak, Sang-Joon;Lee, Han-Yeang
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • Zapla iron ore bodies in Jujuy state, northern Argentina are located within Paleozoic Silurian marine sedimentary rocks and can be categorized into ironstone deposit. Iron ores contain oolitic hematite as main iron mineral as well as siderite and chamosite. Hematite replaced biotite and/or muscovite along their cleavage or grain boundary, which indicates hematite is precipitated by chemical reaction. Silurian basins in northern Argentina has high potential resources for ironstone deposit but economic aspects of ore body can be controlled by magnitude of lateral vertical extensions and local grade variation of iron beds.

On the Prospecting Plans of Mulkum Iron Mine Viewed by the Character and Mode of Occurrence of Ore bodyies (물금철산의 광체발달 양상과 그에 따른 탐광계획)

  • Kim, Seon Eok;Kang, Yang Pyeong
    • Economic and Environmental Geology
    • /
    • v.2 no.1
    • /
    • pp.13-33
    • /
    • 1969
  • The Mulkum mine, located in Mulkum-myon, Yangsan-Kun, Kyeongsang Province, is one of the biggest iron mine in Korea. The geology of this mine and its vicinity consists of Chusan andesitic rocks and Datae-dong andesite porphyry of the Kyeongsang System which were intruded by biotite granite widely distributed near the vicinity of Mulkum-ni. The ore deposits, embedded in Dotae-dong andesite porphyry, are fissure-filling vein type in origin. Up to present ore bodies of Main vein, No. 2 vein, Eastern No. 1, 2 vein and Western No. 1 vein are exploited. Generally the veins strike N 10-25 E and dip to 60-90 SE. The proved length of vein is more than 500 meters and its depth 150 meters in Main vein with 3-4 meters of thickness in average. Ore minerals are mainly magnetite and locally associated with small amounts of hematite, sphecularite and chalcopyrite. Gangue minerals are quartz, epidote, chlorite, pyroxene, and garnet, etc. The modes of occurrence of vein are as follow; 1. Branching and parallel vein patterns are observed around main shaft in -1 level. 2. Multiple cymoid loops and subrectangular vein patterns are observed around main shaft in -2 level. 2. Single vein patterns are observed in -3 and -5 level. The ore-shoots plunge northeasterly about 20-30 degrees. In conclusion, the tectonically fractured zone belongs to the poorly mineralized zone and shoots are formed as single vein type. The general trends of one-shoots must be applied the prospecting of the deep-seated ore body in the deposits.

  • PDF

The Optimal Resource Development for Analysing Data of Deposit Types' Ore Reserves of Oversea Metal Resource (해외 금속자원에 대한 광상유형별 자료 분석을 통한 효과적인 자원개발)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.773-795
    • /
    • 2008
  • The major import minerals of South Korea are copper ore, lead-zinc ore, iron ore, manganese ore and molybdenum ore. Oversea resources development of South Korea have 92 projects in 14 nations of Asia, 29 projects in 10 nations of America and Europe, and 14 projects in 9 nations of Middle Asia and Africa. But, most projects of them are found in Australia, China, Mongolia and Indonesia. The most projects of the Australia, China and Indonesia are interested in coal and a little projects of them have manganese, iron, lead-zinc, nickel, copper, gold, molybdenum, rare earth elements and uranium. The most projects of the Mongolia are interested in gold and rare earth elements. Representative ore deposits models of metal resources are Orogenic lode deposits, Volcanogenic massive sulphide deposits, Porphyry deposits, Sedimentary exhalative deposits, Mississippi valley type deposits, Iron oxide copper-gold deposits and Magmatic nickel-copper-platinum group element deposits based on global distribution, reverses and grades of their deposits models. If oversea mineral resources will be examined the mineral reserves, mineral mine production and ore deposits models of nations and then survey and investigate of mineral resources, we may be maintained ore body of high grade at survey area and decrease the investment risk.