• Title/Summary/Keyword: ordinal model

Search Result 83, Processing Time 0.022 seconds

A Study of the Lesional Grade Discrimination Model for Vocal Fold Nodules and Polyps (성대 결절 및 폴립 병변 판별 예측모형에 대한 연구)

  • Park, Soo-Jung;Shim, Hyun-Sup;Chung, Sung-Min;Kim, Han-Soo;Park, Ae-Kyung
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.15 no.2
    • /
    • pp.112-117
    • /
    • 2004
  • Background and Objectives : This study is purposed to investigate the statistically significant discrimination model for predicting vocal fold nodule and polyp's lesional grade, with patients' background data and objective voice evaluation parameters. Materials and Method : The retrospective research was carried out at the Ewha Womans University Hospital. 122 patients' voice examination data had been selected, and lesion screening (Grade I, II, and III) was conducted by 2 ENT specialists, with each patient's vocal fold pictures achieved during the laryngoscopy examination. Results : The Lesional Grade Discrimination Model with which the lesional grade of vocal fold nodules and polyps could be predicted was derived by the ordinal logistic regression analysis (using SPSS 10.0). With this model the lesional grades of 73 out of 122 patients(59.8%) were correctly predicted to their formerly screened ones. Conclusion : This model applied the multivariate approach, which statistically combined these currently used parameters, Jitter, Shimmer, MFR, MPT, and patient's background data such as gender and dysphonia period. It might explain the status of benign lesion of vocal folds, and furthermore expect the physiological function of vocal folds.

  • PDF

Collapsibility and Suppression for Cumulative Logistic Model

  • Hong, Chong-Sun;Kim, Kil-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.313-322
    • /
    • 2005
  • In this paper, we discuss suppression for logistic regression model. Suppression for linear regression model was defined as the relationship among sums of squared for regression as well as correlation coefficients of. variables. Since it is not common to obtain simple correlation coefficient for binary response variable of logistic model, we consider cumulative logistic models with multinomial and ordinal response variables rather than usual logistic model. As number of category of a response variable for the cumulative logistic model gets collapsed into binary, it is found that suppressions for these logistic models are changed. These suppression results for cumulative logistic models are discussed and compared with those of linear model.

An Adaptive Face Recognition System Based on a Novel Incremental Kernel Nonparametric Discriminant Analysis

  • SOULA, Arbia;SAID, Salma BEN;KSANTINI, Riadh;LACHIRI, Zied
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2129-2147
    • /
    • 2019
  • This paper introduces an adaptive face recognition method based on a Novel Incremental Kernel Nonparametric Discriminant Analysis (IKNDA) that is able to learn through time. More precisely, the IKNDA has the advantage of incrementally reducing data dimension, in a discriminative manner, as new samples are added asynchronously. Thus, it handles dynamic and large data in a better way. In order to perform face recognition effectively, we combine the Gabor features and the ordinal measures to extract the facial features that are coded across local parts, as visual primitives. The variegated ordinal measures are extraught from Gabor filtering responses. Then, the histogram of these primitives, across a variety of facial zones, is intermingled to procure a feature vector. This latter's dimension is slimmed down using PCA. Finally, the latter is treated as a facial vector input for the advanced IKNDA. A comparative evaluation of the IKNDA is performed for face recognition, besides, for other classification endeavors, in a decontextualized evaluation schemes. In such a scheme, we compare the IKNDA model to some relevant state-of-the-art incremental and batch discriminant models. Experimental results show that the IKNDA outperforms these discriminant models and is better tool to improve face recognition performance.

A Simplified Model of the CIA based on Scaling Theory (척도이론에 근거한 CIA의 간편화 모형)

  • Jeon, Jeong-Cheol;Im, Dong-Jun;An, Gi-Hyeon;Gwon, Cheol-Sin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.444-447
    • /
    • 2008
  • This study is intended to develop a improved version of Cross Impact Analysis Model based on Scaling Theory. In developing the model, we applied the scale transformation technique and regression technique to existing CIA model. Improved CIA model is composed of two sub-models: 'model for impact value measurement,' and 'model for impact value conversion'. We applied a technique which measures data by ordinal scale and then transforms them into interval scale and ratio scale data to CIA model. The accuracy of forecasting and the usability of CIA application have been improved.

  • PDF

Corporate Credit Rating using Partitioned Neural Network and Case- Based Reasoning (신경망 분리모형과 사례기반추론을 이용한 기업 신용 평가)

  • Kim, David;Han, In-Goo;Min, Sung-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.2
    • /
    • pp.151-168
    • /
    • 2007
  • The corporate credit rating represents an assessment of the relative level of risk associated with the timely payments required by the debt obligation. In this study, the corporate credit rating model employs artificial intelligence methods including Neural Network (NN) and Case-Based Reasoning (CBR). At first we suggest three classification models, as partitioned neural networks, all of which convert multi-group classification problems into two group classification ones: Ordinal Pairwise Partitioning (OPP) model, binary classification model and simple classification model. The experimental results show that the partitioned NN outperformed the conventional NN. In addition, we put to use CBR that is widely used recently as a problem-solving and learning tool both in academic and business areas. With an advantage of the easiness in model design compared to a NN model, the CBR model proves itself to have good classification capability through the highest hit ratio in the corporate credit rating.

  • PDF

Multiclass SVM Model with Order Information

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.331-334
    • /
    • 2006
  • Original Support Vsctor Machines (SVMs) by Vapnik were used for binary classification problems. Some researchers have tried to extend original SVM to multiclass classification. However, their studies have only focused on classifying samples into nominal categories. This study proposes a novel multiclass SVM model in order to handle ordinal multiple classes. Our suggested model may use less classifiers but predict more accurately because it utilizes additional hidden information, the order of the classes. To validate our model, we apply it to the real-world bond rating case. In this study, we compare the results of the model to those of statistical and typical machine learning techniques, and another multi class SVM algorithm. The result shows that proposed model may improve classification performance in comparison to other typical multiclass classification algorithms.

Model Classification of Quality Statistics Using Block Repeated Measures (블록 반복측정을 이용한 품질통계 모형의 유형화)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 2007
  • Dependent models in quality statistics are classified as serially autocorrelated model, multivariate model and dependent sample model. Dependent sample model is most efficient in time and cost to obtain samples among the above models. This paper proposes to implement parametric and nonparametric models into production system depended on demand pattern. Nonparametric models have distribution free and asymptotic distribution free techniques. Quality statistical models are classified into two categories ; the number of dependent sample and the type of data. The type of data consists of nominal, ordinal, interval and ratio data. The number of dependent sample divides into 2 samples and more than 3 samples.

A generalized logit model with mixed effects for categorical data (다가자료에 대한 혼합효과모형)

  • 최재성
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.129-137
    • /
    • 2002
  • This paper suggests a generalized logit model with mixed effects for analysing frequency data in multi-contingency table. In this model nominal response variable is assumed to be polychotomous. When some factors are fixed but considered as ordinal and others are random, this paper shows how to use baseline-category logits to incoporate the mixed-effects of those factors into the model. A numerical algorithm was used to estimate model parameters by using marginal log-likelihood.

A generalized logit model with mixed effects for categorical data (다가자료에 대한 혼합효과모형)

  • Choi, Jae-Sung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25-33
    • /
    • 2001
  • This paper suggests a generalized logit model with mixed effects for analysing frequency data in multi-contingency table. In this model nominal response variable is assumed to be polychotomous. When some factors are fixed but condisered as ordinal and others are random, this paper shows how to use baseline-category logits to incoporate the mixed-effects of those factors into the model. A numerical algorithm was used to estimate model parameters by using marginal log-likelihood.

  • PDF

Bayesian inference of the cumulative logistic principal component regression models

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.203-223
    • /
    • 2022
  • We propose a Bayesian approach to cumulative logistic regression model for the ordinal response based on the orthogonal principal components via singular value decomposition considering the multicollinearity among predictors. The advantage of the suggested method is considering dimension reduction and parameter estimation simultaneously. To evaluate the performance of the proposed model we conduct a simulation study with considering a high-dimensional and highly correlated explanatory matrix. Also, we fit the suggested method to a real data concerning sprout- and scab-damaged kernels of wheat and compare it to EM based proportional-odds logistic regression model. Compared to EM based methods, we argue that the proposed model works better for the highly correlated high-dimensional data with providing parameter estimates and provides good predictions.