• Title/Summary/Keyword: ordered structure

Search Result 385, Processing Time 0.031 seconds

Parallel Computation Algorithm of Gauss Elimination in Power system Analysis (전력계통해석을 위한 자코비안행렬 가우스소거의병렬계산 알고리즘)

  • 서의석;오태규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.189-196
    • /
    • 1994
  • This paper describes a parallel computing algorithm in Gauss elimination of Jacobian matrix to large-scale power system. The structure of Jacobian matrix becomes different according to ordering method of buses. In sequential computation buses are ordered to minimize the number of fill-in in the triangulation of the Jacobian matrix. The proposed method develops the parallelism in the Gauss elimination by using ND(nested dissection) ordering. In this procedure the level structure of the power system network is transformed to be long and narrow by using end buses which results in balance of computing load among processes and maximization of parallel computation. Each processor uses the sequential computation method to preserve the sqarsity of matrix.

  • PDF

Microstructure and Mechanical Properties of Mg-Zn-Y-Yb Alloys Produced by Consolidation of Rapidly Solidified Ribbons

  • Sakamoto, Yoshihito;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1045-1047
    • /
    • 2006
  • Fabrication of $Mg_{95.75}Zn_1Y_3Yb_{0.25}$ bulk alloy has been performed through the consolidation of rapidly solidified ribbons. The $Mg_{95.75}Zn_1Y_3Yb_{0.25}$ bulk alloy exhibited excellent mechanical properties, high tensile yield strength of 530 MPa, and large elongation of 3 %. Microstructure of the alloy was characterized by equiaxed fine grains that consist of -Mg, long period ordered (LPO) structure phase, and $Mg_5RE$-type cubic compound. The strengthening of the alloys may be due to fine grains with LPO structure phase and $Mg_5RE$-type compound.

  • PDF

Fabrication of 3-Dimensional LiMn2O4 Thin Film

  • Park, Bo-Gun;Ryu, Jea Hyeok;Choi, Won Youl;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.653-656
    • /
    • 2009
  • 3-Dimensionally ordered macroporous $LiMn_2O_4$ thin film was prepared by a sol-gel and dip coating method on Pt/Ti/$SiO_2$/Si substrate. An opal structure consisting of mono dispersed polystyrene beads (300 nm) was used as a template. After solution containing Mn and Li precursors was coated on the template-deposited substrate, the template and organic materials in the precursors was removed by calcination at 400 ${^{\circ}C}$. And then the 3-dimensional $LiMn_2O_4$ thin film with spinel structure was fabricated by heat treatment at 700 ${^{\circ}C}$. The structural and electrochemical property was investigated by XRD, SEM and charge-discharge cycler.

Molecular Dynamics Simulation for Bilayers of Alkyl Thiol Molecules at Solid-Solid Interfaces

  • 이송희;김한수;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1047-1054
    • /
    • 1998
  • We present the results of molecular dynamics simulations for three different systems of bilayers of long-chain alkyl thiol [S(CH2)15CH3] molecules on an solid-solid interface using the extended collapsed atom model for the chain-molecule. It is found that there exist two possible transitions: a continuous transition characterized by a change in molecular interaction between sites of different chain molecules with increasing area per molecule and a sudden transition from an ordered lattice-like state to a liquid-like state due to the lack of interactions between sites of chain molecules on different surfaces with increasing distance between two solid surfaces. The third system displays a smooth change in probability distribution characterized by the increment of gauche structure in the near-tail part of the chain with increasing area per molecule. The analyses of energetic results and chain conformation results demonstrate the characteristic change of chain structure of each system.

Self-Assembled and Langmuir-Blodgett Arachidic Acid Monolayers on Silver: A Comparative Reflection-Absorption Fourier Transform Infrared Spectroscopic Study

  • Ahn, Sang-Jung;Mirzakhojaev, Diyas A.;Son, Dong-Hee;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.369-374
    • /
    • 1994
  • Self-assembled (SA) and Langmuir-Blodgett (LB) monolayers of arachidic acid on silver surfaces have been investigated by a reflection-absorption Fourier transform infrared spectroscopy. Arachidic acid was adsorbed on silver as carboxylate with its two oxygen atoms bound symmetrically to the surface. Although both the SA and LB monolayers consisted of fully extended trans zigzag carbon chains, a closer examination indicated that the SA monotayers should possess a more ordered crystalline structure than the LB monolayers. The infrared spectral data dictated that the extent of methyl group exposure at the air-film interface was greater in the SA monolayers than the LB monolayers, in agreement with the contact angle measurement. From a theoretical analysis, the alkyl chains in each monolayers seemed to be tilted away from the surface normal by less than $3.5^{\circ}$, but in opposite directions. Arachidic acid monolayers were concluded to have same structure as stearic acid monolayers.

Nonequilibrium Molecular Dynamics Simulation Study on the Shear-Induced Orientational Change of Rodlike Molecules

  • Lee, Chang Jun;Sim, Hun Gu;Kim, Un Cheon;Lee, Song Hui;Park, Hyeong Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.434-440
    • /
    • 2000
  • We present the results of computer simulation for the steady shear flows of rodlike molecules using nonequi-librium molecular dynamics simulation (NEMD) method. The model particle is a rigid rod composed of lin-early connected 6-sites and the Lennard-Jones 12-6 potential governs interactions between sites in different molecules. The system of rodlike molecules exhibits the change of orientational structure, that is, isotropic-nematic transition at high shear rates. We elucidate the nature of the ordered system developed from an isotro-pic phase by steady shear through an analysis of various quantities: orientational order parameters, orientational pair correlation functions, orientational distribution function, and snapshots of configurations. The effects of temperature and density on the shear rate dependence of orientational structure are described.

Synthesis and Analysis of Ge2Sb2Te5 Nanowire Phase Change Memory Devices

  • Lee, Jun-Yeong;Kim, Jeong-Hyeon;Jeon, Deok-Jin;Han, Jae-Hyeon;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.222.2-222.2
    • /
    • 2015
  • A $Ge_2Sb_2Te_5$ nanowire (GST NW) phase change memory device is investigated with Joule heating electrodes. GST is the most promising phase change materials, thus has been studied for decades but atomic structure transition in the phase-change area of single crystalline phase-change material has not been clearly investigated. We fabricated a phase change memory (PCM) device consisting of GST NWs connected with WN electrodes. The GST NW has switching performance with the reset/set resistance ratio above $10^3$. We directly observed the changes in atomic structure between the ordered hexagonal close packed (HCP) structure and disordered amorphous phase of a reset-stop GST NW with cross-sectional STEM analysis. Amorphous areas are detected at the center of NW and side areas adjacent to heating electrodes. Direct imaging of phase change area verified the atomic structure transition from the migration and disordering of Ge and Sb atoms. Even with the repeated phase transitions, periodic arrangement of Te atoms is not significantly changed, thus acting as a template for recrystallization. This result provides a novel understanding on the phase-change mechanism in single crystalline phase-change materials.

  • PDF

A Study for the fabrication of Au dot-arrays using porous alumina film (다공성 알루미나 박막을 이용한 Au dot-arrays의 제작에 관한 연구)

  • Jung, Kyung-Han;Park, Sang-Hyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.922-925
    • /
    • 2003
  • The interest of self-organization materials that have uniform and regular structure in nano scale has been grown due to their utilization in various fields of nanotechnology. An attractive candidate among these materials is anodic aluminum oxide film, which are formed by anodization of aluminum in an appropriate acid solution. The anodic aluminum oxide film has a highly ordered porous structure with very uniform and nearly parallel pores that can be organized in an almost precise close-packed hexagonal structure. In this study, we attempt to make Au dot arrays, which were fabricated using anodic aluminum oxide film as an evaporation mask. The Au dot arrays have a uniform sized dots and spacing to its neighbors and the average diameter of Au dots is about 60 nm corresponding to them of the mask.

  • PDF

Molecular Dynamics Simulations of the Diffusion of Bimetallic Nanoclusters Supported on Graphite (분자동역학을 이용한 흑연 위에서의 2종 합금 나노입자의 확산 거동 연구)

  • Park, Joon Woo;Lee, Ju Seong;Min, Chan Ho;Lee, Hyun Seok;Ryu, Ji Hoon;Seo, Dong Hwa;Lee, Hyuck Mo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.461-465
    • /
    • 2009
  • We study the diffusion of Ag based bimetallic nanoclusters supported on graphite. Using a molecular dynamics simulation, we reveal that the Ag clusters show rapid diffusion because of their hexagonal bottom layer. In order to decrease the rate of diffusion, we added Pt and Ni to distort the structure of the alloy cluster (i.e., the alloying method). We expected Pt to provide a stronger force on Ag atoms, and Ni to shorten the bond length and thereby change the structure of Ag cluster. However, the attempt was unsuccessful, because Pt and Ni atoms formed cores inside the Ag clusters. We therefore designed a collision system where large Ag clusters collide with small Pt or Ni clusters. Upon collision with Pt clusters, the diffusion showed little change, because Pt atoms are substituted at the Ag atomic site and form a perfectly ordered structure. The collision with Ni, however, deforms the bottom layer as well as the overall cluster structure and decreases diffusion. This outcome appoints toward the possibility of further application to the manufacture of durable nanocatalysts.

Studies on the structure-activity of antimicrobial peptide isolated from horseshoe crab (투구게로부터 단리된 항균성 펩티드의 구조-활성에 관한 연구)

  • Lee, Hyung-Ho;Park, Jang-Su;Park, Nam-Gyu
    • Journal of fish pathology
    • /
    • v.9 no.1
    • /
    • pp.65-77
    • /
    • 1996
  • Tachyplesin I is an antimicrobial peptide isolated from horseshoe crab. To investigate the mechanism of action of tachyplesin I for phospholipid bilayers, tachyplesin I and five analogs have been synthesized by the solution method. The synthesized five analogs are [$Phe^2$]-tachyplesin I, [$Phe^{8,13}$]-tachyplesin I, [$Cys(Acm)^{3,7,12,16}$]-tachyplesin I with no disulfide bonds, 7(Acm) and 10 (Acm) which denote the fragments [$Cys(Acm)^{3,7,12,16}$]-tachyplesin I. Circular dichroism spectra showed that tachyplesin I took an antiparallel $\beta$-structure in buffer solution and a less ordered structure in acidic liposomes. The carboxyfluorescein leakage experiment indicated that tachyplesin I interacted strongly with neutral and acidic phospholipid bilayers. In fluorescence experiment, the hydrophobic part of the peptide was shown to be embedded in lipid bilayers. All the peptides except for 7(Acm) and 10(Acm) were almost equally active in lipopolysaccharide binding. Therefore, the present study suggested that phospholipid bilayers induced a conformational change of tachyplesin I from the stable $\beta$-structure to a less ordered one.

  • PDF