• Title/Summary/Keyword: orderable group

Search Result 2, Processing Time 0.017 seconds

ORDERED GROUPS IN WHICH ALL CONVEX JUMPS ARE CENTRAL

  • Bludov, V.V.;Glass, A.M.W.;Rhemtulla, Akbar H.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.225-239
    • /
    • 2003
  • (G, <) is an ordered group if'<'is a total order relation on G in which f < g implies that xfy < xgy for all f, g, x, y $\in$ G. We say that (G, <) is centrally ordered if (G, <) is ordered and [G,D] $\subseteq$ C for every convex jump C $\prec$ D in G. Equivalently, if $f^{-1}g f{\leq} g^2$ for all f, g $\in$ G with g > 1. Every order on a torsion-free locally nilpotent group is central. We prove that if every order on every two-generator subgroup of a locally soluble orderable group G is central, then G is locally nilpotent. We also provide an example of a non-nilpotent two-generator metabelian orderable group in which all orders are central.

FOLIATIONS FROM LEFT ORDERS

  • Baik, Hyungryul;Hensel, Sebastian;Wu, Chenxi
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.699-715
    • /
    • 2022
  • We describe a construction which takes as an input a left order of the fundamental group of a manifold, and outputs a (singular) foliation of this manifold which is analogous to a taut foliation. We investigate this construction in detail in dimension 2, and exhibit connections to various problems in dimension 3.