DOI QR코드

DOI QR Code

FOLIATIONS FROM LEFT ORDERS

  • Received : 2021.09.02
  • Accepted : 2021.11.02
  • Published : 2022.07.01

Abstract

We describe a construction which takes as an input a left order of the fundamental group of a manifold, and outputs a (singular) foliation of this manifold which is analogous to a taut foliation. We investigate this construction in detail in dimension 2, and exhibit connections to various problems in dimension 3.

Keywords

References

  1. J. Bowden, Approximating C0 -foliations by contact structures, Geom. Funct. Anal. 26 (2016), no. 5, 1255-1296. https://doi.org/10.1007/s00039-016-0387-2
  2. S. Boyer, C. McA. Gordon, and L. Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013), no. 4, 1213-1245. https://doi.org/10.1007/s00208-012-0852-7
  3. S. Boyer, D. Rolfsen, and B. Wiest, Orderable 3-manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 243-288. http://aif.cedram.org/item?id=AIF_2005__55_1_243_0 https://doi.org/10.5802/aif.2098
  4. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999. https://doi.org/10.1007/978-3-662-12494-9
  5. D. Calegari, Foliations transverse to triangulations of 3-manifolds, Comm. Anal. Geom. 8 (2000), no. 1, 133-158. https://doi.org/10.4310/CAG.2000.v8.n1.a5
  6. A. Clay and D. Rolfsen, Ordered groups and topology, Graduate Studies in Mathematics, 176, American Mathematical Society, Providence, RI, 2016. https://doi.org/10.1090/gsm/176
  7. N. M. Dunfield, Floer homology, group orderability, and taut foliations of hyperbolic 3-manifolds, Geometry & Topology 24 (2020), no. 4, 2075-2125. https://doi.org/10.2140/gt.2020.24.2075
  8. C. D. Hodgson, J. H. Rubinstein, H. Segerman, and S. Tillmann, Triangulations of 3-manifolds with essential edges, Ann. Fac. Sci. Toulouse Math. (6) 24 (2015), no. 5, 1103-1145. https://doi.org/10.5802/afst.1477
  9. A. Juh'asz, A survey of heegaard floer homology, In New ideas in low dimensional topology, pages 237-296. World Scientific, 2015.
  10. W. Kazez and R. Roberts, C0 approximations of foliations, Geometry & Topology 21 (2017), no. 6, 3601-3657. https://doi.org/10.2140/gt.2017.21.3601
  11. T. Koberda, Faithful actions of automorphisms on the space of orderings of a group, New York J. Math. 17 (2011), 783-798.
  12. R. B. Mura and A. Rhemtulla, Orderable groups, Bull. Amer. Math. Soc. 84 (1978), 647-649. https://doi.org/10.1090/S0002-9904-1978-14511-X
  13. A. Navas, On the dynamics of (left) orderable groups, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 5, 1685-1740. https://doi.org/10.5802/aif.2570
  14. P. Ozsvath and Z. Szabo, Holomorphic disks and genus bounds, Geometry & Topology 8 (2002), no. 1, 311-334.
  15. L. Robbiano, Term orderings on the polynomial ring, in EUROCAL '85, Vol. 2 (Linz, 1985), 513-517, Lecture Notes in Comput. Sci., 204, Springer, Berlin, 1985. https://doi.org/10.1007/3-540-15984-3_321
  16. A. S. Sikora, Topology on the spaces of orderings of groups, Bull. London Math. Soc. 36 (2004), no. 4, 519-526. https://doi.org/10.1112/S0024609303003060
  17. H.-H. Teh, Construction of orders in Abelian groups, Proc. Cambridge Philos. Soc. 57 (1961), 476-482. https://doi.org/10.1017/S0305004100035520
  18. B. Zhao, Left orderability, foliations, and transverse (π1, ℝ)-structures for 3-manifolds with sphere boundary, arXiv preprint arXiv:2107.09272, 2021.