• Title/Summary/Keyword: order to produce materials

Search Result 388, Processing Time 0.022 seconds

A Study of the Way How Korean Fashion Brand Company Makes their Order Arrangement - Focused on fashion brand companies in Seoul - (국내 의류 브랜드 업체의 오더 의뢰방식에 관한 실태조사 - 서울시 의류 브랜드 업체를 중심으로 -)

  • Heo, Hyun-seo;Lim, Ho-sun
    • Fashion & Textile Research Journal
    • /
    • v.21 no.2
    • /
    • pp.179-188
    • /
    • 2019
  • Domestic apparel products labeled as 'Made in Korea' in the Chinese market are recognized as a high quality products due to the influence of the Korean Wave (Intergen Consulting Group, 2007). This study analyzes the patterns and order arrangement types of a fashion brand company commissioned to produce apparel in Seoul, Korea in order to rebuild a network of small sewing factories scattered in Korea, reorganize operations, and to find the possibility of regenerating the Korean sewing industry by establishing contact points with domestic sewing factories. We surveyed 100 apparel brand companies in Seoul listed in the 2014/2015 Korea Fashion Brand Annual (Apparel News, 2014) and conducted a questionnaire survey on the company's general management status, type of fabric materials dealt with, and major contact points and methods of production handling. The frequency analysis indicated that the main production material with cloth type was woven fabric with ladies' clothes. The Planning MD team has the highest rate of ordering production with delivery method to the production factory after purchasing fabric and trims. Most respondents answered that they would select a production factory based on recommendations from acquaintances. This was due to a lack of no objective indicator provided by the sewing factory at present and the absence of objectively proceeded communication with brand companies. In this study, we analyze various conditions and measurements for production arrangements from a fashion brand company to revitalize sewing factories in Korea.

Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 III - 오일팜 바이오매스의 반탄화 연구 -)

  • Cho, Hu-Seung;Sung, Yong Joo;Kim, Chul-Hwan;Lee, Gyeong-Seon;Yim, Su-Jin;Nam, Hyeo-Gyeong;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2014
  • Renewable Portfolio Standards(RPS) is a regulation that requires a renewable energy generated from eco-friendly energy sources such as biomass, wind, solar, and geothermal. The RPS mechanism generally is an obligatory policy that places on electricity supply companies to produce a designated fraction of their electricity from renewable energies. The domestic companies to supply electricity largely rely on wood pellets in order to implement the RPS in spite of undesirable situation of lack of wood resources in Korea. This means that the electricity supply companies in Korea must explore new biomass as an alternative to wood. Palm kernel shell (PKS) and empty fruit bunch (EFB) as oil palm wastes can be used as raw materials used for making pellets after their thermochemical treatment like torrefaction. Torrefaction is a pretreatment process which serves to improve the properties including heating value and energy densification of these oil palm wastes through a mild pyrolysis at temperature typically ranging between 200 and $300^{\circ}C$ in the absence of oxygen under atmospheric pressure. Torrefaction of oil palms wastes at above $200^{\circ}C$ contributed to the increase of fixed carbon with the decrease of volatile matters, leading to the improvement of their calorific values over 20.9 MJ/kg (=5,000 kcal/kg) up to 25.1 MJ/kg (=6,000 kcal/kg). In particular, EFB sensitively responded to torrefaction because of its physical properties like fiber bundles, compared to PKS and hardwood chips. In conclusion, torrefaction treatment of PKS and EFB can greatly contribute to the implement of RPS of the electricity supply companies in Korea through the increased co-firing biomass with coal.

Formation of Size-controllable Ag Nanoparticles on Si Substrate by Annealing (크기 조절이 가능한 은 나노입자 형성을 위한 박막의 열처리 효과)

  • Lee, Sang Hoon;Lee, Tae Il;Moon, Kyeong-Ju;Myoung, Jae Min
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.379-384
    • /
    • 2013
  • In order to produce size-controllable Ag nanoparticles and a nanomesh-patterned Si substrate, we introduce a rapid thermal annealing(RTA) method and a metal assisted chemical etching(MCE) process. Ag nanoparticles were self-organized from a thin Ag film on a Si substrate through the RTA process. The mean diameter of the nanoparticles was modulated by changing the thickness of the Ag film. Furthermore, we controlled the surface energy of the Si substrate by changing the Ar or $H_2$ ambient gas during the RTA process, and the modified surface energy was evaluated through water contact angle test. A smaller mean diameter of Ag nanoparticles was obtained under $H_2$ gas at RTA, compared to that under Ar, from the same thickness of Ag thin film. This result was observed by SEM and summarized by statistical analysis. The mechanism of this result was determined by the surface energy change caused by the chemical reaction between the Si substrate and $H_2$. The change of the surface energy affected on uniformity in the MCE process using Ag nanoparticles as catalyst. The nanoparticles formed under ambient Ar, having high surface energy, randomly moved in the lateral direction on the substrate even though the etching solution consisting of 10 % HF and 0.12 % $H_2O_2$ was cooled down to $-20^{\circ}C$ to minimize thermal energy, which could act as the driving force of movement. On the other hand, the nanoparticles thermally treated under ambient $H_2$ had low surface energy as the surface of the Si substrate reacted with $H_2$. That's why the Ag nanoparticles could keep their pattern and vertically etch the Si substrate during MCE.

Flame Retardant Performance of Functional Oil Stains According to the Mixing Ratio of Inorganic Flame Retardants and Phosphorus Flame Retardants (무기계 방염제와 인계 방염제 혼합비율에 따른 기능성 오일스테인의 방염성능)

  • Lee, Ju-Won;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.29-30
    • /
    • 2023
  • Wood is a construction material that has the advantages of carbon dioxide storage ability, noise reflection, and eco-friendliness. In order to use wood for a long time, you must use wood-specific paint, which is called oil stain. Oil stain improves water resistance and moisture resistance, but has the disadvantage of being weak against fire. This is because the oil contained in the oil stain causes a chemical reaction, and this chemical reaction causes the oil stain to spontaneously ignite, igniting nearby combustible materials and causing frequent fires. To improve this, in this study, different flame retardants were mixed and added to oil stain to produce functional oil stain. In addition, we would like to apply it to wood to check glow time and carbonization area. As a result of the experiment, it shows the best performance when mixed at 30(15 + 15)(%) and added to oil stain. The remaining burn time is satisfied from 10% for all samples, and the carbonized area is satisfied when it is 30%.

  • PDF

Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling (볼밀링에서 볼 배합비 선택을 위한 혼합물 실험계획 및 분석)

  • Kim, Seong-Jun;Choi, Jai Young;Shin, Hyunho
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.579-590
    • /
    • 2014
  • Purpose: Ball milling is a popular process for obtaining fine powders in the part and material industry. One of important issues in the ball milling is to produce particles with a uniform size. Although many factors affect uniformity of particles, this paper focuses on the choice of ball diameter. Consider a ball milling where balls can be taken with three different diameters. The purpose of this paper is to find a ball mix which minimizes the average particle size. Methods: Ball diameters are selected as 10mm, 3mm, and 0.5mm. In order to find an optimum mixing ratio, the method of mixture experiments is employed in this paper. Taguchi's signal-to-noise ratio (SNR) for smaller-the-better type is also used to analyze experimental data. Results: According to the experimental result, SNR is maximized when the ball mix is taken as either 7:3:0 or 6:4:0. Such mixing ratios can be technically validated in terms of porosity reduction. Conclusion: The ball mixing technique presented in this paper provides a useful way to improve the production efficiency with a low cost.

Design Development of Korean Creative Dance Wear Expressing Persona and Animus - Focusing on 'Crazy Collage Skirts' - (페르소나와 아니무스를 표현한 한국 창작무용의상 디자인개발 - '미친 치마 꼴라쥬'를 중심으로 -)

  • Kim, Heung-Kyung;Kim, Sun-Hwa
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.7
    • /
    • pp.119-132
    • /
    • 2008
  • This study intended to develop and produce a modern form of fashion design for the Korean creative dance performance, 'Crazy Skirt Collage', which expressed conflict between internal ego and a persona in a woman. The qualitative method was used to analyze literature review, internet search and visual data of historically important cases related to the theme. Based on the analysis, the fashion design of the dance performanre by Hwang Hee-Yeon that was actually staged on Towol Theater, one of the Seoul Arts Center, was produced. The results wire as follows; First, the study confirmed a change of persona that revealed a female's animus strongly as it moved into the modern time. Second, the female's persona was expressed through long skirts, slips, dress shoes, handbags, military shoes, dresses with long zippers, trousers, wedding dresses and Korean full skirts during the performance, while the female's animus through male coats, panties, big bags and clock. In conclusion, it is necessary to study new expressive methods, that is, dance clothes using advanced equipment such as lights, videos or other variety of materials. It is also important to understand aesthetics of modern women's ordinary lives and to adapt ordinary clothes to dance clothes in various methods in order to express their modern lives appropriately through Korean creative dance.

Compression Molding Analysis of LFT-D System for Vehicle Trailing Arm (트레일링 암 생산용 LFT-D 시스템에서의 압축성형 해석)

  • Park, Bo-Gyu;Jung, Jin Woo;Jung, Han-Kyu;Park, Si-Woo;Ha, Dong Soo;Choi, Hyen Yel
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.133-138
    • /
    • 2017
  • Recently, CFRP composites are widely used as lightweight materials have with excellent mechanical properties and can beare widely used in various fields. In general, thermosetting resins are used for CFRP. However, in recent years, studies have been carried out using thermoplastic resins have been actively carried out to overcome the disadvantages of thermosetting resins. The LFT-D system is a molding method in which a fiber is directly cut to a the desired length while being impregnated with a thermoplastic resin to produce a compound and that is then press-molding molded to form the product. In this paper, before the production of the trailing arm, the compression molding analysis was carried out in order to grasp the problems that may occur during production. Through cCompression molding analysis was applied to calculate of the minimum press pressure and to compare and analysis analyze the molding conditions characteristic required to formfor forming the trailing arm.

Vapor Deposition Techniques for Synthesis of Two-Dimensional Transition Metal Dichalcogenides

  • Song, Jeong-Gyu;Park, Kyunam;Park, Jusang;Kim, Hyungjun
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.119-125
    • /
    • 2015
  • Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted significant attention due to their unique and exotic properties attributed to their low dimensionality. In particular, semiconducting 2D TMDCs such as $MoS_2$, $WS_2$, $MoSe_2$, and $WSe_2$ have been demonstrated to be feasible for various advanced electronic and optical applications. In these regards, process to synthesize high quality 2D TMDCs layers with high reliability, wafer-scale uniformity, controllable layer number and excellent electronic properties is essential in order to use 2D TMDCs in practical applications. Vapor deposition techniques, such as physical vapor deposition, chemical vapor deposition and atomic layer deposition, could be promising processes to produce high quality 2D TMDCs due to high purity, thickness controllability and thickness uniformity. In this article, we briefly review recent research trend on vapor deposition techniques to synthesize 2D TMDCs.

Manufacturing Integral Safety Vents in Prismatic Lithium-ion Batteries (직사각형 리튬 이온 전지의 일체형 안전장치 제조 공정에 관한 연구)

  • Kim, J. H.;Lee, K. H.;Lim, Y. J.;Kim, B. M.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.293-298
    • /
    • 2015
  • A safety vent is crucial to protect its user from unpredictable explosions caused by increasing internal pressure of the lithium-ion batteries. In order to prevent the explosion of the battery, a safety vent rupture is required when the internal pressure reaches a critical value. In conventional manufacturing, the cap plate and the safety vent are fabricated separately and subsequently welded to each other. In the current study, a manufacturing process including a backward extrusion and coining process is suggested to produce an integral safety vent which also has the benefit of increasing production efficiency. FE simulations were conducted to predict the rupture pressure and to design the safety vent using a ductile fracture criterion and the element deletion method. The critical value, C, in the ductile fracture criterion was obtained from uniaxial tensile tests with an annealed sheet of 1050-H14 aluminum alloy. Rupture tests were preformed to measure the rupture pressure of the safety vent. The results met the required rupture pressure within 8.5±0.5 kgf/cm2. The simulation results were compared with experimental results, which showed that the predicted rupture pressures are in good agreement with experimentally measured ones with a maximum error of only 3.9%.

Characteristics of Piezoelectric Microspeakers according to the Material Properties (물성변화에 따른 압전형 마이크로스피커의 특성)

  • Jeong, Kyong-Shik;Cho, Hee-Chan;Yi, Seung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.556-561
    • /
    • 2008
  • This paper reports the characteristics of piezoelectric microspeakers that are audible in open air with high quality piezoelectric AlN thin film according to the materials properties. When we use a tensile-stressed silicon nitride diaphragm as a supporting layer, the Sound Pressure Level (SPL) is relatively small and constant at low frequency region and shows about 70 dB at 10 kHz. However, in case of a compressively stressed composite diaphragm, the SPL of the fabricated microspeakers shows higher output pressure than those of a tensile-stressed diaphragm. It produces more than 66 dB from 100 Hz to 15 kHz and the highest SPL is about 100 dB at 9.3 kHz with $20V_{peak-to-peak}$, sinusoidal input biases and at 10 mm distances from the fabricated microspeakers to the reference microphone. From the experimental results, it is superior to have a compressively composite diaphragm in order to produce a high SPL in piezoelectric microspeaker.