• Title/Summary/Keyword: order prediction

Search Result 3,933, Processing Time 0.036 seconds

Soil Analysis on Prediction of Consolidation Settlement in Marine Clays (항만점토(港灣粘土)의 압밀심하량(壓密沈下量) 예측(預測)을 위(爲)한 토질분석(土質分析))

  • Kwon, Moo Nam;Son, Kwang Sik;Lee, Sang Ho
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.87-94
    • /
    • 1986
  • This study was performed in order to contemplate their correlations between physical and mechanical properties of the marine clays which were collected from main harbors in Korea. The results obtained are as follows: 1. Most of the soils in experimental districts consist of CH. CL. and ML. and they are considered to be still proceeding. 2. The equations of the relationship between compression index and liquid limit are as, follows: CH : $C_c=0.0137$ (LL-22.60) CL : $C_c=0.0123$ (LL-14.64) 3. The relationship between compression index and initial void ratio appears that the higher the plasticity, the easier the slope of the regression line. The equations are as follows : CH : $C_c=0.431$ ($e_o-0.504$) CH : $C_c=0.471$ ($e_o-0.235$) ML : $C_c=0.641$ ($e_o-0.393$) 4. The equations of the relationship between compression index and natural water content are as follows: CH : $C_c=0.0133$ ($W_n-28.27$) CL : $C_c=0.0225$ ($W_n-23.56$) ML : $C_c=0.0106$ ($W_n-16.42$) 5. The relationship between initial void ratio and natural water content, and compression index is highly positive correlation and the equations are as follows : CH : $C_c=0.301$ ($e_o+0.017W_n-1.05$) CL : $C_c=0.141$ ($e_o+0.0567W_n-1.054$) ML : $C_c=0.421$ ($e_o+0.0214W_n-1.121$) 6. The equations of the relationship between initial void ratio and liquid limit, and compression index are as follows : CH : $C_c=0.36$ ($e_o+0.08LL-0.819$) CL : $C_c=0.269$ ($e_o+0.026LL-0.929$) 7. The cohesion of marine clays is no concerned with the increment of depth. The equations of relationship between cohesion and unconfined compression strength are as follows. CH : qu=1.896C+0.0107 CL : qu=1.849C+0.04.

  • PDF

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

Tracing the Drift Ice Using the Particle Tracking Method in the Arctic Ocean (북극해에서 입자추적 방법을 이용한 유빙 추적 연구)

  • Park, GwangSeob;Kim, Hyun-Cheol;Lee, Taehee;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1299-1310
    • /
    • 2018
  • In this study, we analyzed distribution and movement trends using in-situ observations and particle tracking methods to understand the movement of the drift ice in the Arctic Ocean. The in-situ movement data of the drift ice in the Arctic Ocean used ITP (Ice-Tethered Profiler) provided by NOAA (National Oceanic and Atmospheric Administration) from 2009 to 2018, which was analyzed with the location and speed for each year. Particle tracking simulates the movement of the drift ice using daily current and wind data provided by HYCOM (Hybrid Coordinate Ocean Model) and ECMWF (European Centre for Medium-Range Weather Forecasts, 2009-2017). In order to simulate the movement of the drift ice throughout the Arctic Ocean, ITP data, a field observation data, were used as input to calculate the relationship between the current and wind and follow up the Lagrangian particle tracking. Particle tracking simulations were conducted with two experiments taking into account the effects of current and the combined effects of current and wind, most of which were reproduced in the same way as in-situ observations, given the effects of currents and winds. The movement of the drift ice in the Arctic Ocean was reproduced using a wind-imposed equation, which analyzed the movement of the drift ice in a particular year. In 2010, the Arctic Ocean Index (AOI) was a negative year, with particles clearly moving along the Beaufort Gyre, resulting in relatively large movements in Beaufort Sea. On the other hand, in 2017 AOI was a positive year, with most particles not affected by Gyre, resulting in relatively low speed and distance. Around the pole, the speed of the drift ice is lower in 2017 than 2010. From seasonal characteristics in 2010 and 2017, the movement of the drift ice increase in winter 2010 (0.22 m/s) and decrease to spring 2010 (0.16 m/s). In the case of 2017, the movement is increased in summer (0.22 m/s) and decreased to spring time (0.13 m/s). As a result, the particle tracking method will be appropriate to understand long-term drift ice movement trends by linking them with satellite data in place of limited field observations.

Selection of Optimal Models for Predicting the Distribution of Invasive Alien Plants Species (IAPS) in Forest Genetic Resource Reserves (산림생태계 보호구역에서 외래식물 분포 예측을 위한 최적 모형의 선발)

  • Lim, Chi-hong;Jung, Song-hie;Jung, Su-young;Kim, Nam-shin;Cho, Yong-chan
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.589-600
    • /
    • 2020
  • Effective conservation and management of protected areas require monitoring the settlement of invasive alien species and reducing their dispersion capacity. We simulated the potential distribution of invasive alien plant species (IAPS) using three representative species distribution models (Bioclim, GLM, and MaxEnt) based on the IAPS distribution in the forest genetic resource reserve (2,274ha) in Uljin-gun, Korea. We then selected the realistic and suitable species distribution model that reflects the local region and ecological management characteristics based on the simulation results. The simulation predicted the tendency of the IAPS distributed along the linear landscape elements, such as roads, and including some forest harvested area. The statistical comparison of the prediction and accuracy of each model tested in this study showed that the GLM and MaxEnt models generally had high performance and accuracy compared to the Bioclim model. The Bioclim model calculated the largest potential distribution area, followed by GLM and MaxEnt in that order. The Phenomenological review of the simulation results showed that the sample size more significantly affected the GLM and Bioclim models, while the MaxEnt model was the most consistent regardless of the sample size. The optimal model overall for predicting the distribution of IAPS among the three models was the MaxEnt model. The model selection approach based on detailed flora distribution data presented in this study is expected to be useful for efficiently managing the conservation areas and identifying the realistic and precise species distribution model reflecting local characteristics.

Development of the forecasting model for import volume by item of major countries based on economic, industrial structural and cultural factors: Focusing on the cultural factors of Korea (경제적, 산업구조적, 문화적 요인을 기반으로 한 주요 국가의 한국 품목별 수입액 예측 모형 개발: 한국의, 한국에 대한 문화적 요인을 중심으로)

  • Jun, Seung-pyo;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.23-48
    • /
    • 2021
  • The Korean economy has achieved continuous economic growth for the past several decades thanks to the government's export strategy policy. This increase in exports is playing a leading role in driving Korea's economic growth by improving economic efficiency, creating jobs, and promoting technology development. Traditionally, the main factors affecting Korea's exports can be found from two perspectives: economic factors and industrial structural factors. First, economic factors are related to exchange rates and global economic fluctuations. The impact of the exchange rate on Korea's exports depends on the exchange rate level and exchange rate volatility. Global economic fluctuations affect global import demand, which is an absolute factor influencing Korea's exports. Second, industrial structural factors are unique characteristics that occur depending on industries or products, such as slow international division of labor, increased domestic substitution of certain imported goods by China, and changes in overseas production patterns of major export industries. Looking at the most recent studies related to global exchanges, several literatures show the importance of cultural aspects as well as economic and industrial structural factors. Therefore, this study attempted to develop a forecasting model by considering cultural factors along with economic and industrial structural factors in calculating the import volume of each country from Korea. In particular, this study approaches the influence of cultural factors on imports of Korean products from the perspective of PUSH-PULL framework. The PUSH dimension is a perspective that Korea develops and actively promotes its own brand and can be defined as the degree of interest in each country for Korean brands represented by K-POP, K-FOOD, and K-CULTURE. In addition, the PULL dimension is a perspective centered on the cultural and psychological characteristics of the people of each country. This can be defined as how much they are inclined to accept Korean Flow as each country's cultural code represented by the country's governance system, masculinity, risk avoidance, and short-term/long-term orientation. The unique feature of this study is that the proposed final prediction model can be selected based on Design Principles. The design principles we presented are as follows. 1) A model was developed to reflect interest in Korea and cultural characteristics through newly added data sources. 2) It was designed in a practical and convenient way so that the forecast value can be immediately recalled by inputting changes in economic factors, item code and country code. 3) In order to derive theoretically meaningful results, an algorithm was selected that can interpret the relationship between the input and the target variable. This study can suggest meaningful implications from the technical, economic and policy aspects, and is expected to make a meaningful contribution to the export support strategies of small and medium-sized enterprises by using the import forecasting model.

Damage of Whole Crop Maize in Abnormal Climate Using Machine Learning (이상기상 시 사일리지용 옥수수의 기계학습을 이용한 피해량 산출)

  • Kim, Ji Yung;Choi, Jae Seong;Jo, Hyun Wook;Kim, Moon Ju;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.127-136
    • /
    • 2022
  • This study was conducted to estimate the damage of Whole Crop Maize (WCM) according to abnormal climate using machine learning and present the damage through mapping. The collected WCM data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. Deep Crossing is used for the machine learning model. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The damage was calculated by difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCM data (1978~2017). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization(WMO) standard. The DMYnormal was ranged from 13,845~19,347 kg/ha. The damage of WCM was differed according to region and level of abnormal climate and ranged from -305 to 310, -54 to 89, and -610 to 813 kg/ha bnormal temperature, precipitation, and wind speed, respectively. The maximum damage was 310 kg/ha when the abnormal temperature was +2 level (+1.42 ℃), 89 kg/ha when the abnormal precipitation was -2 level (-0.12 mm) and 813 kg/ha when the abnormal wind speed was -2 level (-1.60 m/s). The damage calculated through the WMO method was presented as an mapping using QGIS. When calculating the damage of WCM due to abnormal climate, there was some blank area because there was no data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

A Study on Risk Assessment Method for Earthquake-Induced Landslides (지진에 의한 산사태 위험도 평가방안에 관한 연구)

  • Seo, Junpyo;Eu, Song;Lee, Kihwan;Lee, Changwoo;Woo, Choongshik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.694-709
    • /
    • 2021
  • Purpose: In this study, earthquake-induced landslide risk assessment was conducted to provide basic data for efficient and preemptive damage prevention by selecting the erosion control work before the earthquake and the prediction and restoration priorities of the damaged area after the earthquake. Method: The study analyzed the previous studies abroad to examine the evaluation methodology and to derive the evaluation factors, and examine the utilization of the landslide hazard map currently used in Korea. In addition, the earthquake-induced landslide hazard map was also established on a pilot basis based on the fault zone and epicenter of Pohang using seismic attenuation. Result: The earthquake-induced landslide risk assessment study showed that China ranked 44%, Italy 16%, the U.S. 15%, Japan 10%, and Taiwan 8%. As for the evaluation method, the statistical model was the most common at 59%, and the physical model was found at 23%. The factors frequently used in the statistical model were altitude, distance from the fault, gradient, slope aspect, country rock, and topographic curvature. Since Korea's landslide hazard map reflects topography, geology, and forest floor conditions, it has been shown that it is reasonable to evaluate the risk of earthquake-induced landslides using it. As a result of evaluating the risk of landslides based on the fault zone and epicenter in the Pohang area, the risk grade was changed to reflect the impact of the earthquake. Conclusion: It is effective to use the landslide hazard map to evaluate the risk of earthquake-induced landslides at the regional scale. The risk map based on the fault zone is effective when used in the selection of a target site for preventive erosion control work to prevent damage from earthquake-induced landslides. In addition, the risk map based on the epicenter can be used for efficient follow-up management in order to prioritize damage prevention measures, such as to investigate the current status of landslide damage after an earthquake, or to restore the damaged area.

A Study of Life Safety Index Model based on AHP and Utilization of Service (AHP 기반의 생활안전지수 모델 및 서비스 활용방안 연구)

  • Oh, Hye-Su;Lee, Dong-Hoon;Jeong, Jong-Woon;Jang, Jae-Min;Yang, Sang-Woon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.864-881
    • /
    • 2021
  • Purpose: This study aims is to provide a total care solution preventing disaster based on Big Data and AI technology and to service safety considered by individual situations and various risk characteristics. The purpose is to suggest a method that customized comprehensive index services to prevent and respond to safety accidents for calculating the living safety index that quantitatively represent individual safety levels in relation to daily life safety. Method: In this study, we use method of mixing AHP(Analysis Hierarchy Process) and Likert Scale that extracted from consensus formation model of the expert group. We organize evaluation items that can evaluate life safety prevention services into risk indicators, vulnerability indicators, and prevention indicators. And We made up AHP hierarchical structure according to the AHP decision methodology and proposed a method to calculate relative weights between evaluation criteria through pairwise comparison of each level item. In addition, in consideration of the expansion of life safety prevention services in the future, the Likert scale is used instead of the AHP pair comparison and the weights between individual services are calculated. Result: We obtain result that is weights for life safety prevention services and reflected them in the individual risk index calculated through the artificial intelligence prediction model of life safety prevention services, so the comprehensive index was calculated. Conclusion: In order to apply the implemented model, a test environment consisting of a life safety prevention service app and platform was built, and the efficacy of the function was evaluated based on the user scenario. Through this, the life safety index presented in this study was confirmed to support the golden time for diagnosis, response and prevention of safety risks by comprehensively indication the user's current safety level.

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.