부분 방전 현상은 배전반, 트랜스포머, 스위치 기어 등 고압전력기기에서 많이 발생한다. 부분 방전은 절연체의 수명을 단축하고 절연파괴를 가져오게 되고 이로 인해 정전사고 등 대형피해가 발생하게 된다. 부분 방전 현상은 제품 내부에서 발생하는 경우와 표면에서 발생하는 여러 가지 유형을 가지고 있다. 본 논문에서는 부분 방전 현상에 대한 패턴 및 발생할 확률을 예측할 수 있는 예측 모델을 설계하는 것이다. 설계된 모델을 분석하기 위하여 부분 방전 현상을 발생시키는 시뮬레이터를 활용하여 각각의 부분 방전 유형에 대한 학습 데이터를 UHF 센서를 통하여 수집하였다. 본 논문에서 설계된 예측 모델은 딥 러닝 중 CNN을 기반으로 설계를 하였으며 학습을 통하여 모델을 검증하였다. 설계된 모델에 대한 학습을 위하여 5,000개의 훈련데이터를 만들었으며 훈련데이터의 형태는 UHF센서에서 입력되는 3차원의 원시데이터를 2차원 데이터로 전 처리하여 모델에 대한 입력데이터로 사용하였다. 실험결과, 학습을 통하여 설계된 모델에 대한 정확도는 0.9972의 정확도를 갖는 것을 알 수 있었으며 데이터를 2차원 이미지로 만들어 학습한 경우 보다 그레이 스케일 이미지 형태로 만들어 학습한 경우가 제안된 모델에 대해 정확도가 높음을 알 수 있었다.
지진으로부터 상대적으로 안전지대라고 여겨졌던 한반도에서 2017년 규모 5.4의 강진이 포항지역에 발생함으로써 액상화 현상이 민가, 농지에서 광범위하게 나타났고 이에 액상화 현상을 예측하는 액상화 재해도 작성에 관한 연구수요가 높아지고 있다. 액상화 현상이란 느슨한 사질토에서 지진과 같은 큰 동적응력이 짧은 시간 작용할 때 과잉간극수압의 급격한 증가로 지반의 강도가 완전히 상실되는 현상을 의미한다. 액상화는 액상화 가능지수(liquefaction potential index, LPI)를 통해 평가할 수 있지만 LPI는 단일 시추공 별로 산출되기 때문에 해당지역의 대표성에 대한 문제가 발생하게 된다. 이러한 대표성의 문제는 지리정보시스템(geographic information system, GIS)을 활용한 공간보간을 통해 보완될 수 있다. 따라서 본 연구에서는 지구통계학적인 공간보간 기법 중 하나인 크리깅(kriging)을 활용하여 지반정보의 대표성 문제를 해결하고자 하였으며 액상화 평가를 위한 지반정보DB를 구축하고자 하였다. 또한 구축된 지반정보DB를 활용하여 재현주기 별 액상화 재해도를 작성하였으며 액상화 재해도 결과는 교차검증을 통하여 정밀도 검증을 수행하였다.
본 연구는 미호천 유역의 월 단위 지하수위 관리 취약 시기 평가와 LSTM을 이용한 미래 지하수위 관리 취약 시기 평가 기법을 제안하였다. 미호천 유역 내의 지하수위 및 강수량 관측소 관측자료를 수집하고, LSTM을 구성한 후 강수량과 지하수위에 대한 2020~2022년 예측 값을 산정하고, 미래 지하수위 관리 취약시기 평가를 수행하였다. 지하수위 관리 취약시기 평가를 위하여 지하수위와 강수량 간의 상관관계를 고려한 가중치와 기후변화로 인한 관측자료의 변동을 고려하기 위한 가중치를 산정한 후, 이를 조합하여 최종 가중치를 산정하였다. 평가 결과 미호천 유역은 2월, 3월, 6월에 지하수위 관리 취약성이 높게 나타났고, 특히 천안수신 관측소 인근은 미래에 지하수위 관리 취약성 지수가 악화 될 것으로 분석되어 추가 관리 방안 도입이 필요할 것으로 나타났다. 본 연구의 결과는 지하수위 관리 취약 시기 평가 및 LSTM을 활용한 미래 예측 기법을 제시함으로써 발생할 수 있는 유역 내 지하수자원 문제에 선제적인 대응방안 도출에 기여할 것으로 기대된다.
Background: ASF was first reported in Kenya in 1910 in 1921. In China, ASF spread to 31 provinces including Henan and Jiangsu within six months after it was first reported on August 3, 2018. The epidemic almost affected the whole China, causing direct economic losses of tens of billions of yuan. Cause great loss to our pig industry. As ELISA is cheap and easy to operate, OIE regards it as the preferred serological method for ASF detection. P54 protein has good antigenicity and is an ideal antigen for detection. Objective: To identify a conservative site in the African swine fever virus (ASFV) p54 protein and perform a Cloth-enzyme-linked immunosorbent assay (ELISA) for detecting the ASFV antibody in order to reduce risks posed by using the live virus in diagnostic assays. Method: We used bioinformatics methods to predict the antigen epitope of the ASFV p54 protein in combination with the antigenic index and artificially synthesized the predicted antigen epitope peptides. Using ASFV-positive serum and specific monoclonal antibodies (mAbs), we performed indirect ELISA and blocking ELISA to verify the immunological properties of the predicted epitope polypeptide. Results: The results of our prediction revealed that the possible antigen epitope regions were A23-29, A36-45, A72-94, A114-120, A124-130, and A137-150. The indirect ELISA showed that the peptides A23-29, A36-45, A72-94, A114-120, and A137-150 have good antigenicity. Moreover, the A36-45 polypeptide can react specifically with the mAb secreted by hybridoma cells, and its binding site contains a minimum number of essential amino acids in the sequence 37DIQFINPY44. Conclusions: Our study confirmed a conservative antigenic site in the ASFV p54 protein and its amino acid sequence. A competitive ELISA method for detecting ASFV antibodies was established based on recombinant p54 and matching mAb. Moreover, testing the protein sequence alignment verified that the method can theoretically detect antibodies produced by pigs affected by nearly all ASFVs worldwide.
알고리즘을 이용하여 금융 상품을 거래하는 알고리즘 트레이딩은 시장의 많은 요인들로 인해 그 결과가 안정적이지 못한 문제가 있다. 이 문제를 완화시키기 위해 트레이딩 알고리즘들을 조합한 앙상블 기법들이 제안되었다. 하지만 이 앙상블 방법에도 여러 문제가 존재한다. 첫째, 앙상블의 필요 요건인 앙상블에 포함된 알고리즘의 최소 성능 요건(랜덤 이상)을 만족시키도록, 트레이딩 알고리즘을 선택하지 못할 수 있다는 점이다. 둘째, 과거에 우수한 성능을 보인 앙상블 모델이 미래에도 우수한 성능을 보일 것이라는 보장이 없다는 점이다. 이 문제점들을 해결하기 위해 앙상블 모델에 포함되는 트레이딩 알고리즘들을 선택하는 방법을 다음과 같이 제안한다. 과거의 데이터를 기반으로 상위 성능의 앙상블 모델들에 포함된 트레이딩 알고리즘들의 기여도를 측정한다. 그러나 이 과거 데이터에만 기반 된 기여도들은 과거의 데이터가 충분히 많지 않고 과거 데이터의 불확실성이 반영되어 있지 않기 때문에 디리클레 분포를 사용하여 기여도 분포를 근사시키고, 기여도 분포에서 기여도 값들을 샘플하여 불확실성을 반영한다. 과거 데이터로부터 구한 트레이딩 알고리즘의 기여도 분포를 기반으로 Transformer을 훈련하여 미래의 기여도를 예측한다. 예측된 미래 기여도가 높은 트레이딩 알고리즘들을 앙상블 모델에 선택하여 포함시킨다. 실험을 통하여 제안된 앙상블 방법이 기존 앙상블 방법들과 비교하여 우수한 성능을 보임을 입증하였다.
본 연구에서는 머신 러닝을 통해 하중 유형에 따른 구간을 나누어 각 하중 유형에 강한 적층 각도 순서가 배치되는 PIC 설계 방법이 범퍼 빔에 적용되었다. 머신 러닝을 적용하기 위한 학습 데이터의 입력 값과 라벨은 각각 전체 요소 중 일부인 참조 요소의 좌표와 하중 유형으로 정의되었다. 좌표 값을 나타내는 방법인 2D 표현 방법과 3D 표현 방법을 비교하기 위하여 각각의 방법으로 학습 데이터 생성 및 머신 러닝 모델이 학습되었다. 2D 표현 방법은 유한요소 모델을 각 면으로 나누고 그에 따른 학습 데이터 생성 및 머신 러닝 모델을 학습시키는 방법이며, 3D 표현 방법은 유한요소 모델 전체에서 학습 데이터를 생성하여 하나의 머신 러닝 모델을 학습시키는 방법이다. 머신 러닝 모델의 성능에 영향을 미치는 하이퍼파라미터는 베이지안 알고리즘을 통해 최적 값으로 튜닝되었으며, 튜닝 된 모델 중 k-NN 분류 방법이 가장 높은 예측률과 AUC-ROC로 나타났다. 그리고 2D 표현 방법과 3D 표현 방법 중 3D 표현 방법이 더 높은 성능을 보였다. 튜닝 된 머신 러닝 모델을 통해 예측된 하중 유형 데이터가 유한요소 모델에 매핑되었으며, 유한요소 해석을 통해 비교 검증되었다. 3D 표현 방법의 머신 러닝 모델로 설계된 PIC 방법이 강도 측면에서 더 우수함이 검증되었다.
교통약자는 우리 사회의 높은 비율을 차지하고 있는 대표적인 사회 취약계층이다. 최근 기술의 발달로 사회취약 계층을 위한 맞춤형 복지 기술이 연구되고 있으나, 일반인들과 비교하면 상대적으로 부족한 실정이다. 이에 본 연구에서는 교통약자를 위한 맞춤형 식당 추천시스템을 구현하고자 한다. 이를 위해 특별교통수단 승하차 이력(7,153건), 대구 푸드 식당 상세정보(955건)의 자료를 결합하여 하이브리드 추천시스템을 구현하였다. 구현된 추천시스템의 유효성 평가를 위해 예측 오차율, 추천 커버리지로 기존 추천시스템들과 성능 비교를 수행하여 유효성을 검증하였다. 분석 결과 기존 추천시스템보다 높은 성능으로 나타났으며, 교통약자를 위한 맞춤형 식당 추천시스템의 가능성을 확인하였다. 또한 일부 교통약자 유형에서 유사한 식당이 추천되는 상관성을 확인하였다. 본 연구결과는 교통약자들의 만족도 높은 식당 이용에 기여할 것으로 판단되며, 연구의 한계점 또한 제시하였다.
본 연구는 4차 산업혁명 시대에 적합한 초등과학 교사 양성을 위해 필요한 초등 과학교육학 과목의 학습 내용에 대해 초등 교사들이 어떻게 생각하는지 알아보고자 온라인 설문을 실시하였다. 그 결과는 다음과 같다. 첫째, 현행 초등 과학교육학 과목의 학습 내용이 4차 산업혁명 시대에 적합하지 않으며 학습 내용 수정이 필요하다고 생각하는 초등교사가 다수 있었다. 초등 교사들이 그렇게 생각한 이유는 주로 과목의 학습 내용이 4차 산업혁명의 특징을 포함하지 못할 뿐만 아니라 시대변화를 반영하지 못하고 과거에 머물러있다고 생각했기 때문이었다. 둘째, 초등 교사들이 4차 산업혁명 시대에 적합한 초등 교사를 양성하는 데에 중요하다고 생각한 내용은 주로 학생의 흥미와 호기심, 과학 실험이나 탐구와 관련이 있는 것이었다. 그에 비해 삭제하거나 축소해야 한다고 생각하는 항목으로는 과학 학습이론, 과학과 교수·학습 모형, 과학의 본성, 영재아 지도가 있었다. 셋째, 초등 교사들이 초등 과학교육학 과목의 학습 내용으로 추가할 필요가 있다고 생각한 내용은 SSI 교육, 과학교육 관련 사회 변화와 미래예측, 첨단과학기술, STEAM 지도, 과학 분야 내의 통합교육이었다. 넷째, 4차 산업혁명 시대에 적합한 초등 교사 양성을 위해 초등 과학교육학 과목의 학습 내용으로 우선 도입해야 한다고 생각하는 항목은 SSI 교육, 과학 분야 내의 통합 교육, STEAM 지도와 과학과 핵심역량이었다. 그 외에 추가로 도입될 필요가 있는 내용으로는 소프트웨어교육, 안전교육, 프로젝트 학습법이 있었다.
본 연구는 문화재 보수에 사용되는 소괴 소석회, 분말 소석회, 시판 소석회를 대상으로 배합비에 따른 석회 모르타르의 유동성, 응결시간 및 수축율을 비교하였다. 유동성 시험 결과, 문화재 조적용 석회 모르타르의 최적 배합수 비율은 소괴 소석회 8~10%, 분말 소석회 10~18%, 시판 소석회 17~40%의 범위로 나타났다. 응결시간과 수축율 분석 결과, 문화재수리표준품셈에 기술된 전돌벽쌓기(습식) 대비 종결시간비는 시판 소석회(0.4) < 분말 소석회(5.6) < 소괴 소석회(5.7)의 순으로, 수축율비는 소괴 소석회(1.1) < 분말 소석회(1.2) < 시판 소석회(3.0)의 순으로 나타났다. 물리·화학적 특성 분석 결과, 소석회의 입자크기가 커질수록 최적 배합수 함량은 낮아졌고 응결시간은 지연되며 수축율은 감소하였다. 이와 같은 결과는 향후 건축문화재의 수리·복원 현장에 사용되는 석회 모르타르의 초기거동과 수축특성을 예측하는데 기여할 것으로 판단된다.
최근 데이터 기반 의사결정 기술이 데이터 산업을 이끄는 핵심기술로 자리 잡고 있는바, 이를 위한 머신러닝 기술은 고품질의 학습데이터를 요구한다. 하지만 실세계 데이터는 다양한 이유에 의해 결측값이 포함되어 이로부터 생성된 학습된 모델의 성능을 떨어뜨린다. 이에 실세계에 존재하는 데이터로부터 고성능 학습 모델을 구축하기 위해서 학습데이터에 내재한 결측값을 자동 보간하는 기법이 활발히 연구되고 있다. 기존 머신러닝 기반 결측 데이터 보간 기법은 수치형 변수에만 적용되거나, 변수별로 개별적인 예측 모형을 만들기 때문에 매우 번거로운 작업을 수반하게 된다. 이에 본 논문은 수치형, 범주형 변수가 혼합된 데이터에 적용 가능한 데이터 보간 모델인 Denoising Self-Attention Network(DSAN)를 제안한다. DSAN은 셀프 어텐션과 디노이징 기법을 결합하여 견고한 특징 표현 벡터를 학습하고, 멀티태스크 러닝을 통해 다수개의 결측치 변수에 대한 보간 모델을 병렬적으로 생성할 수 있다. 제안 모델의 유효성을 검증하기 위해 다수개의 혼합형 학습 데이터에 대하여 임의로 결측 처리한 후 데이터 보간 실험을 수행한다. 원래 값과 보간 값 간의 오차와 보간된 데이터를 학습한 이진 분류 모델의 성능을 비교하여 제안 기법의 유효성을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.