• Title/Summary/Keyword: orbital determination

Search Result 78, Processing Time 0.023 seconds

WFIRST ULTRA-PRECISE ASTROMETRY I: KUIPER BELT OBJECTS

  • Gould, Andrew
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.279-291
    • /
    • 2014
  • I show that the WFIRST microlensing survey will enable detection and precision orbit determination of Kuiper Belt Objects (KBOs) down to $H_{vega}=28.2$ over an effective area of ${\sim}17deg^2$. Typical fractional period errors will be ${\sim}1.5%{\times}10^{0.4(H-28.2)}$ with similar errors in other parameters for roughly 5000 KBOs. Binary companions to detected KBOs can be detected to even fainter limits, $H_{vega}=29$, corresponding to R~30.5 and effective diameters D~7 km. For KBOs H~23, binary companions can be found with separations down to 10 mas. This will provide an unprecedented probe of orbital resonance and KBO mass measurements. More than a thousand stellar occultations by KBOs can be combined to determine the mean size as a function of KBO magnitude down to H~25. Current ground-based microlensing surveys can make a significant start on finding and characterizing KBOs using existing and soon-to-be-acquired data.

Determination of Nucleophilic Reactivity by PMO Method (I) Kinetic Studies on the Chloride Exchange Reactions of Arylmethylchlorides in Dry Acetone (PMO 법에 의한 친핵반응도 결정 (I) Arylmethylchloride의 Chloride 교환반응)

  • Bon-su Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.281-287
    • /
    • 1969
  • Rate constans for the chloride exchange of some arylmethylchloride in dry acetone have been determined, and activation parameters have been evaluated. The reactivities of substates are explained with perturbational molecular orbital (PMO) method and HSAB principle. It was found that carbon-chlorine resonance integral at the transition state is a out 67% of ${\beta}$, the carbon-carbon resonance integral.

  • PDF

Determination of Reactivities by Molecular Orbital Theory (Ⅹ). $S_N2$ Retention Mechanism at a Carbonyl Carbon (화학반응성의 분자궤도론적 연구 (제10보). 카르보닐 탄소에서의 $S_N2-$보존형 메카니즘)

  • Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.16-22
    • /
    • 1977
  • Bimolecular substitution of $Cl^-$ at carbonyl carbon of $CH_3COCl$ has been investigated MO theoretically by calculating energy profiles (EHT) and electronic distribution (CNDO/2) for frontside and backside attacks at several distances of approach. Considerations of other experimental and MO data together with these calculations support the $S_N2-$retention mechanism for the substitution at carbonyl carbon.

  • PDF

GPS Satellite Orbit Prediction Based on Unscented Kalman Filter

  • Zheng, Zuoya;Chen, Yongqi;Xiushan, Lu;Zhixing, Du
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.191-196
    • /
    • 2006
  • In GPS Positioning, the error of satellite orbit will affect user's position accuracy directly, it is important to determine the satellite orbit precise. The real-time orbit is needed in kinematic GPS positioning, the precise GPS orbit from IGS would be delayed long time, so orbit prediction is key to real-time kinematic positioning. We analyze the GPS predicted ephemeris, on the base of comparison of EKF and UKF, a new orbit prediction method is put forward based on UKF in this paper, the result shows that UKF improves the orbit predicted precision and stability. It offers a new method for others satellites orbit determination as Galileo, and so on.

  • PDF

Determination of Reactivity by MO Theory (XX). An MO Theoretical Study on Mechanism of Thiocarbonyl Addition.

  • Lee, IK-Choon;Yang, Ki-Yull
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.4
    • /
    • pp.132-138
    • /
    • 1981
  • Ab initio molecular orbital calculations have been performed in an effort to determine which types of chemical interactions play essential roles for the system, , $H_2O+CH_2SH^+$, and $H_2O+ CH_2S$. The most important contribution to the interaction energy in controlling reaction path is the exchange repulsion energy, EX, which is largely responsible for the shape of the total interaction energy curve. In the ion-molecule reaction, prior protonation of thioformaldehyde or prior deprotonation of water leads to formation of the corresponding ionic adducts ($H_2O+CH_2SH$ and $HOCH_2S^-$), with no barrier to reaction, simulating specific acid and base catalysis, respectively, as in the case of formaldehyde. Otherwise, approach of water to thioformaldehyde gives rise to a completely repulsive interaction.

Space Surveillance Radar Observation Analysis: One-Year Tracking and Orbit Determination Results of KITSAT-1, "우리별 1호"

  • Choi, Jin;Jo, Jung Hyun;Choi, Eun-Jung;Yu, Jiwoong;Choi, Byung-Kyu;Kim, Myung-Jin;Yim, Hong-Suh;Roh, Dong-Goo;Kim, Sooyoung;Park, Jang-Hyun;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • The Korean Institute of Technology Satellite (KITSAT-1) is the first satellite developed by the Satellite Technology Research Center and the University of Surrey. KITSAT-1 is orbiting the Earth's orbit as space debris with a 1,320 km altitude after the planned mission. Due to its relatively small size and altitude, tracking the KITSAT-1 was a difficult task. In this research, we analyzed the tracking results of KITSAT-1 for one year using the Midland Space Radar (MSR) in Texas and the Poker Flat Incoherent Scatter Radar (PFISR) in Alaska operated by LeoLabs, Inc. The tracking results were analyzed on a weekly basis for MSR and PFISR. The observation was conducted by using both stations at an average frequency of 10 times per week. The overall corrected range measurements for MSR and PFISR by LeoLabs were under 50 m and 25 m, respectively. The ionospheric delay, the dominant error source, was confirmed with the International Reference of Ionosphere-16 model and Global Navigation Satellite System data. The weekly basis orbit determination results were compared with two-line element data. The comparison results were used to confirm the orbital consistency of the estimated orbits.

The Importance of $\pi$-Nonbonded Secondary Orbital Interaction on the Stereoselectivity in the (4+2) Cycloaddition Reactions of Allene Compounds (알렌화합물의 (4+2) 고리화반응에서 입체 선택성에 대한 $\pi$-비결합 2차 궤도함수 상호작용의 중요성)

  • Ikchoon Lee;Keun Bae Rhyu;Byung Choon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.133-142
    • /
    • 1987
  • Stereoselectivities of (4+2) cycloaddition reactions of cyclopentadiene with the methyl-substituted allenic acids and esters were investigated by application of $\pi$-nonbonded interaction ($\pi$-NBI) theory. 2-FMO method has been found to be adequate for determination of endo selectivities of diene(LUMO)-dienophile (LUMO) interaction in the thermal reactions and diene (HOMO)-dienophile (LUMO) interaction in the Lewis acid catalyzed reactions. $\pi$-isoconjugate diene structure was formed by through-bond interaction of allene moiety with methyl group in the cumulated diene system; the methyl substituent acts as a conjugative chain and causes inter-level narrowing effect of the FMO's. In dienophiles which do not form $\pi$-isoconjugate diene system, methyl group acts merely as an electron donating group. In thermal reactions, the stereoselectivities are controlled by $\pi$-nonbonded secondary orbital interaction ($\pi$-NSOI) of methyl substituent, which behaves similarly as an ethylene molecule.

  • PDF

Determination of Reactivities by MO Theory (XV). Theoretical Studies on Conformations and Acid Catalysis of Acetamides (MO 理論에 依한 反應性의 決定 (第15報). 아세트아미드류의 형태와 산촉매반응에 관한 이론적 연구)

  • Ikchoon Lee;Dong Whan Park
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.358-367
    • /
    • 1979
  • EHT and CNDO/2 calculations have been performed to determine conformations of acetamides and diacetamides, and of their protonated forms. Results show that: protonation is always favored on the cis position with respect to N due to greater attractive potential between $H^+$ and N; the trans-trans conformer of diacetamides gives the most preferred protonated form although the cis-trans conformer is the most stable one for the unprotonated diacetamides. Protonation on a carbonyl oxygen is predicted to increase both charge and orbital controlled $S_N$SN reactivities of the protonated carbonyl carbon due to increases in positive charge and AO coefficient of ${\pi}$-LUMO of the carbon atom. In the acid catalyzed hydrolysis of diacetamides therefore it appears highly probable that the rate determining attack by a water molecule occurs at the carbon of the protonated carbonyl group and the carbonyl carbon-nitrogen bond scission follows subsequently. This mechanism is consistent with that generally accepted for the hydrolysis of amides in dilute acid solution but disagrees with that proposed by Laureut et al., for acid hydrolysis of N-acetyl-lactams.

  • PDF

Determination of Reactivities by MO Theory (ⅩⅡ). Nucleophilic Substitution Reactions of N-Acetylpiperidone (MO 理論에 依한 反應性의 決定 (第12報). N-아세틸피페리돈의 親核性 置換反應)

  • Lee Ik Choon;Kim Shi Choon;Lee Suk Kee;Park Dong Whan;Jeon Young Gu
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.396-402
    • /
    • 1978
  • MO theoretical studies on the conformation and the acid-catalyzed nucleophilic substitution of N-acetylpyperidone were carried out by EHT, CNDO/2 and the orbital mixing analytical methods. MO calculations show that the most preferred conformation is the half-chair, cis-trans form and the protonation occurs most readily on the acetyl carbonyl oxygen. These results were interpreted in terms of conjugative, electrostatic and steric effect. From orbital mixing analysis, we found also that the reactivity of protonated carbonyl carbon is greatly enhanced due to increase in positive charge (for charge controlled reaction) of the carbonyl carbon atom. Accordingly, the acetyl cleavage will be preferred in the nucleophilic substitution (acid-catalyzed hydrolysis) to the ring cleavage.

  • PDF

Determination of Reactivities by Molecular Orbital Theory (I) Theoretical Treatment on the Photochemical Reaction of Benzene and Maleic Anhydride (분자 궤도론에 의한 반응성 계산 (I) Benzene과 Maleic Anhydride 간의 광화학 반응)

  • Myung-Hwan Whangbo;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.273-280
    • /
    • 1969
  • The MO's of maleic anhydride are calculated using the parameter values, $h_{o}$.= 1, $h_{o}$:= 2, $k_{c=o}$= 1, $k_{c-o}$= 0.8, and ${\delta}_{{\alpha}_n}=2{\times}(0.3)^n$. With these MO's the interaction energies of the photochemical reaction of maleic anhydride (MA) with benzene are calculated using intermolecular orbital theory. It is shown that there are cases where the interaction energy includes a constant term and this term takes a great role in the photochemical interaction energy, and that with the calculated interaction energies the reaction mechanism is quite well explained. And it is proved that the photochemical reaction is possible for the second addition step of MA to benzene, and that the MA-benzene adduct should have the well-known stereochemical structure.

  • PDF