• Title/Summary/Keyword: orbital correction

Search Result 61, Processing Time 0.023 seconds

Correction of Persistent Enophthalmos after Surgical Repair of Blow Out Fracture Using Orbital Decompression Technique of Contralateral Eye (안와골파열골절 정복술 후 지속되는 안구함몰 환자에서 정상측 안구의 안구 감압술의 치험례)

  • Lee, Jun-Ho;Park, Won-Yong;Nam, Hyun-Jae;Kim, Yong-Ha
    • Archives of Craniofacial Surgery
    • /
    • v.9 no.2
    • /
    • pp.101-104
    • /
    • 2008
  • Purpose: Diplopia and cosmetically unacceptable enophthalmos are the major complications of blow out fracture. Prolapse of orbital tissue into the sinuses, enlarged orbital volume, atrophy of orbital fat and loss of support of orbital walls play a role in the pathogenesis of enophthalmos. To correct post-traumatic enophthalmos, freeing of incarcerated orbital contents combined with reduction of bony orbital volume and reconstruction of suspensory support of globe is necessary. But remained enophthalmos after surgical treatment is difficult to correct completely. In this case, the authors performed implant insertion for affected orbit and endoscopic orbital decompression for unaffected orbit for correction of late enophthalmos. Method: We reviewed a girl patient with right inferomedial orbital wall blow out fracture, right zygoma fracture treated at our hospital for correction of enophthalmos. An 18-year-old female had sustained posttraumatic enopthalmos. Two surgical management was performed for correction blow out fracture at the other hospital. But residual diplopia, enophthalmos, cheek drooping were found. And then she transferred to our hospital. She had severe enophthalmos(5 mm) also had diplopia and extraocular muscle limitation. We performed operation for correction of enophthalmos. After operation, she showed minimal improvement of diplopia and enophthalmos(3 mm). The authors make plan for operation for correction enophthalmos due to cosmetical improvement. Implant insertion was performed for affected orbit. For unaffected orbit, nasoendoscopic medial orbital wall decompression was proceeded. Result: Correction of enophthalmos was found after operation and was maintained for nine years follow-up. Patient expressed satisfaction for the result. Conclusion: To correct persistant enophthalmos, we could have satisfactory result with orbital wall reconstruction on affected eye and decompression on unaffected eye.

Perioperative Orbital Volume Change in Blowout Fracture Correction through Endoscopic Transnasal Approach (안와파열골절의 비강내 내시경적 접근을 통한 교정에서 수술 전후 안와 용적 변화)

  • Lee, Jae Woo;Nam, Su Bong;Choi, Soo Jong;Kang, Cheol Uk;Bae, Yong Chan
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.617-622
    • /
    • 2009
  • Purpose: Endoscopic transnasal correction of the blowout fractures has many advantages over other techniques. But after removal of packing material, there were some patients with recurrence of preoperative symptoms. Authors tried to make a quantitative anterograde analysis of orbital volume change over whole perioperative period which might be related with recurrence of preoperative symptoms. Methods: 10 patients with pure medial wall fracture(Group I) and 10 patients with medial wall fracture combined with fracture of orbital floor(Group II) were selected to evaluate the final orbital volume change, who took 3 CT scans, pre-, postoperative and 4 months after packing removal. By multiplying cross - section area of orbit in coronal view with section thickness, orbital volume were calculated. Then, mean orbital volume increment after trauma, mean orbital volume decrement after endoscopic correction and volume increment after packing removal were found out. And we tried to find correlations between type of fracture, initial correction rate and final correction rate. Results: The mean orbital volume increment of the fractured orbits were 7.23% in group I and 13.69% in group II. After endoscopic surgery, mean orbital volume decrement were 11.0% in group I and 12.46% in group II. Mean volume increment after packing removal showed 3.10% in group I and 6.50% in group II. The initial correction rate(%) showed linear correlation with final correction rate(%) after packing removal. And there were negative linear correlation between increment percentage of orbital volume by fracture and final correction rate(%). Conclusion: Orbital volume was proved to be increasing after removal of packing or foley catheter and it was dependent upon type of fracture. Overcorrection should be done to improve the final result of orbital blowout fracture especially when there are severe fracture is present.

Orbital Volume Change Resulted from Packing in Ethmoidal Sinus for Correction of Isolated Medial Orbital Fractures (안와내벽파열골절의 내시경적 사골동내 충전에 따른 안와용적 변화)

  • Kim, Kyoung-Hoon;Choi, Soo-Jong;Kang, Cheol-Uk;Bae, Yong-Chan;Nam, Su-Bong
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • Purpose: Endoscopic transnasal correction of the medial orbital fractures cannot be enable to confirm the reduction degree of orbital volume without imaging modalities. We have intended through this study to make a quantative analysis of preoperative orbital volume increment and the reduction degree of that after ethmoidal sinus packing by using CT scan. Methods: In this retrospective study, 22 patients were selected to evaluate the postoperative volume reduction, who took 2 CT scans which are pre- and postoperative under the same protocol. The postoperative CT scan was carried out in about 5 days after the operation with the packing inserted into ethmoidal sinus. The length of bony defect on each section was measured by PACS program and the area of defect was calculated by summing lengths on each section multiplied by the thickness of the section. When the outline of orbit on the slice is drawn manually with a cursor, PACS program measures the area automatically. Orbital volume was calculated from the sum of the area multiplied by the section thickness. Results: The mean dimension of fractured walls was $2.86{\pm}0.99cm^2$. The mean orbital volume of the unaffected orbits was $22.89{\pm}2.15cm^3$ and that of the affected orbits was $25.62{\pm}2.82cm^3$. The mean orbital volume increment of the affected orbits was $2.73{\pm}1.13cm^3$. After surgery, the mean orbital volume of the unaffected orbits was $22.46{\pm}2.73cm^3$ and the mean orbital volume decrease on the surgical side was $2.98{\pm}1.07cm^3$. The estimated correction rate was 118.30%. Conclusion: The orbital volume increment in fractured orbit showed linear correlation with the dimension of fractured area. The orbital volume changes after ethmoidal sinus packing also showed linear correlation with orbital volume increment in fractured orbit. This study showed the regressive linear correlation between the increment of orbital volume and the correction rate. To evaluate the maintenance of reduction state, we think that the further study should be done for comparative analysis of orbital volume change after removal of packing.

Correction of post-traumatic enophthalmos with anatomical absorbable implant and iliac bone graft

  • Choi, Ji Seon;Oh, Se Young;Shim, Hyung-Sup
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.6
    • /
    • pp.361-369
    • /
    • 2019
  • Background: Trauma is one of the most common causes of enophthalmos, and post-traumatic enophthalmos primarily results from an increased volume of the bony orbit. We achieved good long-term results by simultaneously using an anatomical absorbable implant and iliac bone graft to correct post-traumatic enophthalmos. Methods: From January 2012 to December 2016, we performed operations on seven patients with post-traumatic enophthalmos. In all seven cases, reduction surgery for the initial trauma was performed at our hospital. Hertel exophthalmometry, clinical photography, three-dimensional computed tomography (3D-CT), and orbital volume measurements using software to calculate the specific volume captured on 3D-CT (ITK-SNAP, Insight Toolkit-SNAP) were performed preoperatively and postoperatively. Results: Patients were evaluated based on exophthalmometry, clinical photographs, 3D-CT, and orbital volume measured by the ITK-SNAP program at 5 days and 1 year postoperatively, and all factors improved significantly compared with the preoperative baseline. Complications such as hematoma or extraocular muscle limitation were absent, and the corrected orbital volume was well maintained at the 1-year follow-up visit. Conclusion: We present a method to correct enophthalmos by reconstructing the orbital wall using an anatomical absorbable implant and a simultaneous autologous iliac bone graft. All cases showed satisfactory results for enophthalmos correction. We suggest this method as a good option for the correction of post-traumatic enophthalmos.

Experience of Single Stage Treatment of Caniosynostosis, Hypertelorism, Exophthalmos Patient (두개조기유합증, 안와격리증, 안구돌출증 환자의 동시 교정 치험례)

  • Chung, Chul Hoon;Eun, Seok Chan;Seo, Dong Kuk;Jo, Woo Sung;Park, Se Hyuck
    • Archives of Plastic Surgery
    • /
    • v.33 no.2
    • /
    • pp.237-240
    • /
    • 2006
  • The simultaneous correction of the hypertelorism and exophthalmos combined with craniosynostosis is very rarely performed operative procedures in the world. The craniosynostosis is the congenital anomaly that designates premature fusion of one or more sutures in either cranial vault or cranial base. Hypertelorism is not a distinct clinical syndrome in itself, but is a physical finding secondary to facial and cranial maldevelopment and it is defined as a increase in the distance between the medial orbital walls. Exophthalmos can occur following the decrease in the size of the orbit in patients with developmental skeletal disorders such as craniofacial synostosis. The authors experienced 9-year-old male patient, who has complex cranio-facial abnormality. The craniosynostosis was oxycephaly type and primary fronto-orbital advancement surgery had been performed in other hospital. The abnormal cranial vault combined with hypertelorism and exophthalmos due to maldeveloped both orbital walls. Surgical correction was obtained by various cranio-fronto-orbital remodeling technique such as calvarial bone craniotomy, fronto-orbital advancement, paramedian resection, medial canthopexy, Tessier-Wolfe three wall orbital expansions. We achieved a quite satisfactory result both functionally and aesthetically in a complex cranio-facial deformity patient by combination and modification of previously developed various cranio-facial plasty technique and hereby report the case with brief discussion and review of literature.

Orbit Determination from Tracking Data of Artificial Satellite Using the Method of Differential Correction (인공위성 추적자료의 미분보정에 의한 궤도결정)

  • 이병선;조중현;박상영;최규홍;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.31-43
    • /
    • 1988
  • The differential correction process determining osculating orbital elements as correct as possible at a given instant of time from tracking data of artificial satellite was accomplished. Preliminary orbital elements were used as an initial value of the differential correction procedure and iterated until the residual of real observation (O) and computed observation(C) was minimized. Tracking satellite was NOAA-9 or TIROS-N series. Two types of tracking data were prediction data precomputed from mean orbital elements of TBUS and real data obtained from tracking 1.70 GHz HRPT signal of NOAA-9 using 5 meter auto-track antenna in Radio Research Laboratory. Accrding to thacking data either Gause method or Herrick-Gibbs method was applied to preliminary orbit determination. In the differential correction stage we used both of the Escobal(1975)'s analytical method and numerical method using f, g series for the comparision. The results between analytical and numerical ones are nearly consistent. And the differentially corrected orbit converged to the same value in spite of the differences between preliminary orbits of each time span.

  • PDF

Correction of Posttraumatic Enophthalmos

  • Hazani, Ron;Yaremchuk, Michael J.
    • Archives of Plastic Surgery
    • /
    • v.39 no.1
    • /
    • pp.11-17
    • /
    • 2012
  • Management of posttraumatic enophthalmos can present as a challenge to the reconstructive surgeon, particularly in cases of late presentation. This article reviews the pertinent anatomy of the orbit, diagnostic modalities, indications for surgery, and surgical approaches as they relate to the treatment of posttraumatic enophthalmos. Internal orbital reconstruction has evolved to an elegant procedure incorporating various biologic or alloplastic implants, including anatomical pre-bent implants. Successful repair of late enophthalmos has been demonstrated in multiple recent studies and is likely related to the precision with which orbital anatomy can be restored.

The Inferior Orbital Wall Reconstruction by Titanium Micro-mesh Remodeling (Titanium Micro-mesh의 개형을 통한 하벽부 안와골절의 재건)

  • Kim, Han Koo;Choi, Min Seok;Kim, Woo Seob;Bae, Tae Hui
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Purpose: The inferior orbital wall is the most vulnerable to injury and inadequate reconstruction of inferior orbital fracture result in postoperative complications include enophthalmos, ocular dystopia and diplopia. Although the anatomical reconstruction of the inferior orbital wall is necessary to prevent these complications, the complexity of inferior orbital wall makes it difficult. We fabricated and remodeled the titanium micro-mesh plate for the anatomical reconstruction of inferior orbital wall. Methods: Twenty-nine patients with inferior orbital wall blow-out fracture were operated and twelve of them presented large extensive fracture. We intraoperatively fabricated and remodeled the Titanium-micro mesh to angulated lazy S shape similar to contralateral uninjured orbit. The preoperative and postoperative facial CT scan verified the 3-dimensional and anatomical reconstruction of the fractures. The mean follow-up was 19.7 months and postoperative complications was evaluated. Results: All cases showed the exact anatomical reconstruction, but there were minor complications in two cases. one patient had postoperative diplopia until 3months after surgery and the other patient had persistent enophthalmos (2 mm), but no further surgical correction was required. Conclusion: The comprehensive understanding of orbital convexity is the most important factor for anatomical reconstruction of inferior orbital fracture. We could prevent postoperative complications after inferior orbital wall reconstruction by intraoperative fabrication and anatomical remodeling of Titanium micro-mesh.

Endoscopic slide-in orbital wall reconstruction for isolated medial blowout fractures

  • Kim, Taewoon;Kim, Baek-Kyu
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.6
    • /
    • pp.345-350
    • /
    • 2020
  • Background: This study evaluated the efficacy of the endoscopic medial orbital wall repair by comparing it with the conventional transcaruncular method. This surgical approach differs from the established endoscopic technique in that we push the mesh inside the orbit rather than placing it over the defect. Methods: We retrospectively reviewed 40 patients with isolated medial orbital blowout fractures who underwent medial orbital wall reconstruction. Twenty-six patients underwent endoscopic repair, and 14 patients underwent external repair. All patients had preoperative computed tomography scans taken to determine the defect size. Pre- and postoperative exophthalmometry, operation time, the existence of diplopia, and pain were evaluated and compared between the two methods. We present a case showing our procedure. Results: The operation time was significantly shorter in the endoscopic group (44.7 minutes vs. 73.9 minutes, p= 0.035). The preoperative defect size, enophthalmos correction rate, and pain did not significantly differ between the two groups. All patients with preoperative diplopia, eyeball movement limitation, or enophthalmos had their symptoms resolved, except for one patient who had preexisting strabismus. Conclusion: This study demonstrates that endoscopic medial orbital wall repair is not inferior to the transcaruncular method. The endoscopic approach seems to reduce the operation time, probably because the dissection process is shorter, and no wound repair is needed. Compared to the previous endoscopic method, our method is not complicated, and is more physiological. Larger scale studies should be performed for validation.

A Case of Surgical Correction of Undercorrected Unicoronal Synostosis (부족교정된 일측성 관상봉합 조기유합증 환자의 수술 교정예)

  • Shim, Hyung Sup;Paik, Hye Won;Byeon, Jun Hee
    • Archives of Craniofacial Surgery
    • /
    • v.9 no.2
    • /
    • pp.85-89
    • /
    • 2008
  • Purpose: Unicoronal synostosis is the craniofacial anomaly caused by premature fusion of unilateral coronal suture. Ipsilateral flattening of the frontal and parietal bones, temporal retrusion with elevation and recession of the supraorbital rim are main clinical features. Compensatory contralateral frontal bossing and deviation of the nasal root and/or chin can also occur. There is a controversy about techniques for surgical correction, however, bilateral approach technique is more effective for correction of deformity. Methods: A 4-year-old patient with unicoronal synostosis had undergone unilateral suturectomy at 28-month-old but fronto-facial deformity had remained and aggravated as she grew older. She had both fronto-facial and endocranial asymmetry. We performed coronal cranial approach and fully exposed affected cranium including supraorbital rim. Anterior 2/3 calvarial reconstruction with bilateral frontal bone osteotomy and fronto-orbital bandeau advancement was performed. Results: Fronto-facial symmetry including fronto-orbital contour, nasal devation was improved. Endocranial twisting was also improved from $158^{\circ}$ to $162^{\circ}$ in CSO(crista gallisella turcica-opisthion) degree. There was no postoperative complications and no need for revision, and facial asymmetry improved at the period of 2 years of follow-up. Conclusion: Bilateral approach with fronto-orbital bandeau remodeling in surgery of unicoronal synostosis looked superior to unilateral approach in achieving better symmetry and preventing recurrence of asymmetry. Remodeling surgery should be tried in patients even at an older age to correct fronto-facial asymmetry.