• Title/Summary/Keyword: orbit propagation software

Search Result 8, Processing Time 0.025 seconds

A Deep Space Orbit Determination Software: Overview and Event Prediction Capability

  • Kim, Youngkwang;Park, Sang-Young;Lee, Eunji;Kim, Minsik
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.139-151
    • /
    • 2017
  • This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for high-fidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

New TLE generation method based on the past TLEs (과거 TLE정보를 활용한 새로운 TLE정보 생성기법)

  • Cho, Dong-Hyun;Han, Sang-Hyuck;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.881-891
    • /
    • 2017
  • In this paper, we described the new TLE(Two Line Elements) generation method based on the compansation technique by using past TLEs(Two Line Elements) released by JSpOC(Joint Space Operation Center) in USA to reduce the orbit prediction error for long duration of SGP4(Simplified General Perturbations 4) which is a simplifed and analytical orbit propagator. The orbital residuals the orbital difference between two ephemeris for the first TLE only and for the all TLEs updated by JSpOC for the past some period was applied for this algorithm instead of general orbit determination software. Actually, in these orbital residuals, the trend of orbit prediction error from SGP4 is included. Thus, it is possible to make a simple residual function from these orbital residulas by using the fitting process. By using these residual functions with SGP4 prediction data for the currnet TLE data, the compansated orbit prediction can be reconstructed and the orbit prediction error for long duration of SGP4 is also reduced. And it is possible to generate new TLE data from it. In this paper, we demonstraed this algorithm in simple simulation, and the orbital error is decreased dramatically from 4km for the SGP4 propagation to 2km for it during 7 days as a result.

AN ORBIT PROPAGATION SOFTWARE FOR MARS ORBITING SPACECRAFT (화성 근접 탐사를 위한 우주선의 궤도전파 소프트웨어)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Kim, Han-Dol;Choi, Jun-Min;Kim, Hak-Jung;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI) of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods), the results show about maximum ${\pm}5$ meter errors, in every position state components(radial, cross-track and along-track), when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

LIQUID APOGEE ENGINE BURN PLANS FOR THE KOREASAT-3 (액체추진제를 사용한 무궁화위성 3호의 정지궤도 진입 시뮬레이션)

  • 윤재철;최규홍;김두환;김방엽;김은규
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.427-436
    • /
    • 1998
  • The apogee manoeuvre of $KOREASAT-1{cdot}2{cdot}3$ is basic elliptical orbit transfer converting orbit plane. The KOREASAT-3 is planed for multi-burn manoeuvres using the liquid apogee engine while the $KOREASAT-1{cdot}2$ used the apogee kick motor that executes a single burn in the apogee of transfer orbit using the solid propellant. This study analyzed the multi-burn manoeuvres using the liquid apogee engine and the propellant control method and developed the simulation tools. For the purpose of precise simulation, We designed tools in the basic of orbit propagation software, COWELL5, that was developed by members of Center for Astrodynamics in Yonsei university and the results can be displayed in 3-D graphic of $STK/VO^{TM}$.

  • PDF

A Development of Satellite Communication Link Analysis Tool

  • Ayana, Selewondim Eshetu;Lim, SeongMin;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.117-129
    • /
    • 2020
  • In a Satellite communication system, a link budget analysis is the detailed investigation of signal gains and losses moving through a channel from a sender to receiver. It inspects the fading of passed on data signal waves due to the process of spreading or propagation, including transmitter and receiver antenna gains, feeder cables, and related losses. The extent of the proposed tool is to make an effective, efficient, and user-friendly approach to calculate link budget analysis. It is also related to the satellite communication correlation framework by building up a graphical interface link analysis tool utilizing STK® software with the interface of C# programming. It provides better kinds of graphical display techniques, exporting and importing data files, printing link information, access data, azimuth-elevation-range (AER), and simulation is also possible at once. The components of the link budget analysis tool include transmitter gain, effective isotropic radiated power (EIRP), free space loss, propagation loss, frequency Doppler shift, flux density, link margin, elevation plot, etc. This tool can be useful for amateur users (e.g., CubeSat developers in the universities) or nanosat developers who may not know about the RF communication system of the satellite and the orbital mechanics (e.g., orbit propagators) principle used in the satellite link analysis.

High Resolution Spaceborne SAR Operation and Target Recognition Simulator Using STK (STK를 이용한 고해상도 위성 SAR 운용 및 표적물 추출 기법)

  • Lee, Bo-Yun;Lee, Seul-Ki;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.299-309
    • /
    • 2013
  • A comprehensive SAR(Synthetic Aperture Radar) simulation is considered to be a complicated task since a full knowledge of the signal propagation characteristics, antenna pattern, system internal errors and interference noises should be taken into account. In high resolution target application modes, the time varying nature of target RCS(Radar Cross Section) strongly affects the generated SAR images. In this paper, in-depth SAR simulations are performed and analyzed incorporating the STK tools and MATLAB software. STK provides realistic orbit parameters while its radar module helps to extract accurate radiometric parameters of ground targets. SAR raw data corresponding to a given target is generated and processed using MATLAB simulator. The performance is measured by PSLR(Peak Sidelobe Ratio) and ISLR(Integrated Sidelobe Ratio) for a point target, which can be used as reference parameters for accurate radiometric calibration. Finally, high resolution target simulations are performed by adopting time varying target RCS characteristics.

Load-Balancing Rendezvous Approach for Mobility-Enabled Adaptive Energy-Efficient Data Collection in WSNs

  • Zhang, Jian;Tang, Jian;Wang, Zhonghui;Wang, Feng;Yu, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1204-1227
    • /
    • 2020
  • The tradeoff between energy conservation and traffic balancing is a dilemma problem in Wireless Sensor Networks (WSNs). By analyzing the intrinsic relationship between cluster properties and long distance transmission energy consumption, we characterize three node sets of the cluster as a theoretical foundation to enhance high performance of WSNs, and propose optimal solutions by introducing rendezvous and Mobile Elements (MEs) to optimize energy consumption for prolonging the lifetime of WSNs. First, we exploit an approximate method based on the transmission distance from the different node to an ME to select suboptimal Rendezvous Point (RP) on the trajectory for ME to collect data. Then, we define data transmission routing sequence and model rendezvous planning for the cluster. In order to achieve optimization of energy consumption, we specifically apply the economic theory called Diminishing Marginal Utility Rule (DMUR) and create the utility function with regard to energy to develop an adaptive energy consumption optimization framework to achieve energy efficiency for data collection. At last, Rendezvous Transmission Algorithm (RTA) is proposed to better tradeoff between energy conservation and traffic balancing. Furthermore, via collaborations among multiple MEs, we design Two-Orbit Back-Propagation Algorithm (TOBPA) which concurrently handles load imbalance phenomenon to improve the efficiency of data collection. The simulation results show that our solutions can improve energy efficiency of the whole network and reduce the energy consumption of sensor nodes, which in turn prolong the lifetime of WSNs.