• Title/Summary/Keyword: orbit design

Search Result 399, Processing Time 0.023 seconds

Analysis of the KARISMA Orbit Determination Performance for the Radar Tracking Data (우주파편 충돌위험 종합관리 시스템의 레이더 관측 데이터 처리 결과 비교 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Many countries tried to design the collision risk management system to protect their own satellites from collision probability due to the space debris. In this situation, KARI(Korea Aerospace Research Institute) is developing the KARISMA(KARI Conjunction Risk Management System) to protect our operating satellites from these space debris. The quality of this system is depending on the accuracy of orbit determination for the space debris which has collision risk. Therefore, this system must treat many kinds of measurement data types to estimate the orbit of space debris. In this paper, to handle the radar observation data widely used for these space debris, the orbit determination system was applied with simulated radar tracking data for the KOMSAT-2 which has precise orbit determination data.

Electrical Design of a Solar Array for LEO Satellites

  • Park, Heesung;Cha, Hanju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.401-408
    • /
    • 2016
  • During daylight, the solar array of low earth orbit satellites harvests electrical power to operate satellites. The power conversion of the solar array is carried out by control of the operation point using the solar array regulator when the solar array faces the sunlight. Thus, the design of the solar array should comply with not only the power requirement of satellite system but also the input voltage requirement of the solar array regulator. In this paper, the design requirements of the solar array for low earth orbit satellites are defined, and the means of satisfying these requirements are described. In addition, the architecture of a multi-distributed interface is suggested to maximize the power harvested from a solar array having high temperature deviation between each panel. The power analysis in this paper shows the optimal number of multi-distributed interfaces with a converter.

Design, Implementation, and Validation of KOMPSAT-2 Software Simulator

  • Lee, Sang-Uk;Lee, Byoung-Sun;Kim, Jae-Hoon;Cho, Sung-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.140-152
    • /
    • 2005
  • In this paper, we present design features, implementation, and validation of a satellite simulator subsystem for the Korea Multi-Purpose Satellite-2 (KOMPSAT-2). The satellite simulator subsystem is implemented on a personal computer to minimize costs and trouble on embedding onboard flight software into the simulator. An object-oriented design methodology is employed to maximize software reusability. Also, instead of a high-cost commercial database, XML is used for the manipulation of spacecraft characteristics data, telecommand, telemetry, and simulation data. The KOMPSAT-2 satellite simulator subsystem is validated by various simulations for autonomous onboard launch and early orbit phase operations, anomaly operation, and science fine mode operation. It is also officially verified by successfully passing various tests such as the satellite simulator subsystem test, mission control element system integration test, interface test, site installation test, and acceptance test.

  • PDF

Development of Electrical Power Subsystem of Cube Satellite STEP Cube Lab for Verification of Space-Relevant Technologies

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.31-37
    • /
    • 2016
  • STEP Cube Lab (Cube Laboratory for Space Technology Experimental Project) is a 1U standardized pico-class satellite. Its main mission objective is an on-orbit verification of five fundamental core space technologies. For assuring a successful missions of the STEP Cube Lab with five payloads, electrical power subsystem (EPS) shall sufficiently provide an electrical power to payloads and bus systems of the satellite during an entire mission life. In this study, a design process of EPS system was introduced including power budget analysis considering a mission orbit and various mission modes of the satellite. In conclusion, adequate EPS hardware in compliance with design requirements were selected. The effectiveness and mission capability of EPS architecture design were confirmed through an energy balance analysis (EBA).

THE DESIGN AND ANALYSIS PROGRAM FOR THE DEVELOPMENT OF LEO SATELLITE ELECTRICAL POWER SUBSYSTEM (저궤도 인공위성 전력계 개발을 위한 설계 분석 프로그램)

  • Lee, Sang-Kon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.2
    • /
    • pp.179-194
    • /
    • 2007
  • The design and analysis of satellite power subsystem is an important driver for the mass, size, and capability of the satellite. Every other satellite subsystem is affected by the power subsystem, and in particular, important issues such as launch vehicle selection, thermal design, and structural design are largely influenced by the capabilities and limitations of the power system. This paper introduces a new electrical power subsystem design program for the rapid development of LEO satellite and shows an example of design results using other LEO satellite design data. The results shows that the proposed design program can be used the optimum sizing and the analytical prediction of the on-orbit performance of satellite electrical power subsystem.

Modeling of Reaction Wheel Using KOMPSAT-1 Telemetry (KOMPSAT-1 Telemetry를 활용한 반작용휠 모델링)

  • Lee, Seon-Ho;Choi, Hong-Taek;Yong, Gi-Ryeok;Oh, Si-Hwan;Rhee, Seung-U
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • The design of reaction wheel control logic is critical to achieve the spacecraft attitude stabilization and performance requirements for the successful mission. Due to various uncertainties on orbit there exist limitation to obtain the model parameters through the ground tests and to design the associated control logic. Thus, the model parameter correction using on-orbit data is essential to the control performance on orbit. This paper performs the system identification using KOMPSAT-1 telemetry data and extracts the model parameters of the reaction wheel. Moreover, the reaction wheel is remodeled and compared with the ground test results.

Thermal Design on the Backplane of GPS Antenna of Low Earth Orbit Satellite (지구저궤도위성 GPS 안테나 후판 열설계)

  • Hyun, Bum-Seok;Lee, Jang-Joon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.136-140
    • /
    • 2011
  • In this study, thermal model for backplane of GPS antenna in Low Earth Orbit Satellite is updated and orbit thermal analysis is performed. The analysis is focused on the safehold mode of satellite. During the safehold mode, the solar panel is constantly looking to the Sun, and there is not a mission maneuvering. Therefore, antenna backplane receives the maximum heat influx considering the End-Of-Life condition. To maintain the temperature of antenna within allowable limits, radiating tape is applied and its area is determined. Besides, to verify the lowest temperature of the antenna, cold case with Begin-Of-Life analysis is also performed.

Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle

  • Corpino, Sabrina;Stesina, Fabrizio;Calvi, Daniele;Guerra, Luca
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.271-290
    • /
    • 2020
  • The paper describes the analysis of deployment strategies and trajectories design suitable for executing the inspection of an operative spacecraft in orbit through re-usable CubeSats. Similar missions have been though indeed, and one mission recently flew from the International Space Station. However, it is important to underline that the inspection of an operative spacecraft in orbit features some peculiar characteristics which have not been demonstrated by any mission flown to date. The most critical aspects of the CubeSat inspection mission stem from safety issues and technology availability in the following areas: trajectory design and motion control of the inspector relative to the target, communications architecture, deployment and retrieval of the inspector, and observation needs. The objectives of the present study are 1) the identification of requirements applicable to the deployment of a nanosatellite from the mother-craft, which is also the subject of the inspection, and 2) the identification of solutions for the trajectories to be flown along the mission phases. The mission for the in-situ observation of Space Rider is proposed as reference case, but the conclusions are applicable to other targets such as the ISS, and they might also be useful for missions targeted at debris inspection.

Calculation Scheme of Interference between Low Earth Orbit Satellite System and Terrestrial System (저궤도 위성시스템과 지상시스템의 간섭 계산 기법)

  • Gam, Hye-Mi;Oh, Dae-Sub;Ahn, Do-Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.46-51
    • /
    • 2009
  • This paper addresses the calculation method of the interference produced between the LEO(Low Earth Orbit) satellite constellation and Terrestrial system operating in the same frequency and area. We describes the procedure used in the numerical computation of the statistics of the total interference produced by interference system. The presented results are applied for mutual protection of LEO satellite constellation and FS system during system design phase.

  • PDF

Orbit Determination of Korea Regional Navigation Satellite System Using Inter-Satellite Links and Ground Observations

  • Choi, Jungmin;Oh, Hyungjik;Park, Chandeok;Park, Sang-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.327-333
    • /
    • 2017
  • This study presents the orbit determination (OD) of a candidate Korea Regional Navigation Satellite System (KRNSS) using both inter-satellite links (ISLs) and ground observations. The candidate constellation of KRNSS is first introduced. The OD algorithm based on both ISL and ground observation is developed, and consists of three main components: dynamic model for Korean navigation satellites, measurement model for ISLs and ground observations, and the batch least-square filter for estimating OD parameters. As numerical simulations are performed to analyze the OD performances, the present study focuses on investigating the effects of ISL measurements on the OD accuracy of KRNSS. Simulation results show that the use of ISLs can considerably enhance the OD accuracy to one meter (design preference) under certain distributions of ground stations.