• Title/Summary/Keyword: orbit design

Search Result 399, Processing Time 0.023 seconds

Development of the Test and Mnitor System for Satellite Communications Payload and Network

  • Kong, Nam-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.34-37
    • /
    • 1994
  • A satellite communications monitoring and control system(SCMCS) has been developed at ETRI to provide the capabilities of in-orbit test (IOT) for communications payload and communications system monitoring(CSM) for the satellite communications services. The paper discusses the system level design of SCMCS and its tasks.

  • PDF

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.

Spatial Decorrelation of SBAS Satellite Error Corrections in the Korean Peninsular

  • Jang, Jaegyu;So, Hyoungmin;Lee, Kihoon;Park, Jun-Pyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • The characteristics of the SBAS satellite orbit and clock corrections are highly affected by the narrow network size in the Korean peninsula, which is expected to have an important role in the future dual frequency SBAS. The correlation between satellite corrections can be analyzed in terms of the spatial decorrelation effect which should be analyzed to keep the service area as wide as possible. In this paper, the characteristics of satellite error corrections for the potential Korean dual frequency SBAS were analyzed, and an optimal filter design approach is proposed to maximize the service area.

KOMPSAT SATELLITE LAUNCH AND DEPLOYMENT OPERATIONS

  • Baek, Myung-Jin;Chang, Young-Keun;Lee, Jin-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.199-208
    • /
    • 1999
  • In this paper, KOMPSAT satellite launch and deployment operations are discussed. The U.S. Taurus launch vehicle delivers KOMPSAT satellite into the mission orbit directly. Launch and deployment operations is monitored and controlled by several international ground stations including Korean Ground Station (KGS). After separation from launch vehicle, KOMPSAT spacecraft deploys solar array by on-board autonomous stored commands without ground inter-vention and stabilizes the satellite such that solar arrays point to the sun. Autonomous ground communication is designed for KOMPSAT for the early orbit ground contact. KOMPSAT space-craft has capability of handing contingency situation by on-board fault management design to retry deployment sequence.

  • PDF

Preliminary Design of Electric Interface It Software Protocol of MSC(Multi-Spectral Camera) on KOMPSAT-II (다목적실용위성 2호 고해상도 카메라 시스템의 전기적 인터페이스 및 소프트웨어 프로토콜 예비 설계)

  • 허행팔;용상순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.101-101
    • /
    • 2000
  • MSC(Multispectral Camera), which will be a unique payload on KOMPSAT-II, is designed to collect panchromatic and multi-spectral imagery with a ground sample distance of 1m and a swath width of 15km at 685km altitude in sun-synchronous orbit. The instrument is designed to have an orbit operation duty cycle of 20% over the mission life time of 3 years. MSC electronics consists of three main subsystems; PMU(Payload Management Unit), CEU(Camera Electronics Unit) and PDTS(Payload Data Transmission Subsystem). PMU performs all the interface between spacecraft and MSC, and manages all the other subsystems by sending commands to them and receiving telemetry from them with software protocol through RS-422 interface. CEU controls FPA(Focal Plane Assembly) which contains TDI(Timc Delay Integration) CCD(Charge Coupled Device) and its clock drivers. PMU provides a Master Clock to synchronize panchromatic and multispectral camera. PDTS performs compression, storage and encryption of image data and transmits them to the ground station through x-band.

  • PDF

SUN INCIDENCE ANGLE ANALYSIS OF KOMPSTAT-2 PAYLOAD DURING NORMAL MISSION OPERATIONS (정상 임무운용 상태에서 다목적실용위성 2호 탑재체에 대한 태양 입사각 분석)

  • 김응현;용기력;이상률
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.309-316
    • /
    • 2000
  • KOMPSAT-2 will carry MSC(Multi-Spectral Camera) which provides 1m resolution panchromatic and 4m resolution multi-spectral images at the altitude of 685km sun-synchronous mission orbit. The mission operation of KOMSPAT-2 is to provide the earth observation using MSC with nadir pointing. KOMPSAT-2 will also have the capability of roll/pitch tilt maneuver using reaction wheel of satellite as required. In order to protect MSC from thermal distortion as well as direct sunlight, MSC shall be operated within the constraint of sun incidence angle. It is expected that the sunlight will not violate the constraint of sun incidence angle for normal mission operations without roll/pitch maneuver. However, during roll/pitch tilt operations, optical module of MSC may be damaged by the sunlight. This study analyzed sun incidence angle of payload using KOMPSAT-2 AOCS (Attitude and Orbit Control Subsystem) Design and Performance Analysis Soft ware for KOMPSAT-2 normal mission operations.

  • PDF

Development and On Orbit Data Analysis About Reaction Wheel of Small Satellite (소형 위성용 반작용 휠 개발 및 궤도내 구동 결과 분석)

  • Kim, JiChul;Choi, YunHo;Lee, Sangchul;Oh, Hwa-suk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.140-145
    • /
    • 2015
  • An on-board reaction wheel is payload of small satellite for space environment test. The reaction wheel is designed for considering physical, electrical, and environmental requirements. In this paper, we report design, manufacturing process and operation performance verification. Furthermore, the specifications of environmental test are performed under environmental conditions for guarantee of stability and reliability. The operation and environment test results are presented to meet the requirements at the reaction wheel flight model.

Design of DubaiSAT-1 S-band Receiver RF block (DubaiSAT-1 위성용 S-band 수신기의 RF 블록 설계)

  • Park, In-Yong;Min, Seung-Hyun;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.178-182
    • /
    • 2011
  • A FSK receiver RF block has been developed for Dubaisat-1 Low Earth Orbit satellite. The receiver has Doppler tracking function which compensate frequency shift on uplink channel for commanding the satellite. It consist of LNA, downconverter and IF module. The IF module has Doppler tracking circuitry which sweep and lock on to input signal. It satisfies the requirement of the Dubaisat-1 in mass, power consumption, tracking speed and BER performance.

THE ADVANTAGE OF ON ORBIT NON-UNIFORMITY CORRECTION FOR MULTI SPECTRAL CAMERA (MSC)

  • Chang Young-Jun;Kong Jong-Pil;Huh Haeng-Pal;Kim Young-Sun;Park Jong-Euk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.586-588
    • /
    • 2005
  • The MSC (Multi Spectral Camera) system is a remote sensing payload to obtain high resolution ground image. This system uses lossy image compression method for &Direct mission& that transmit whole image during one contact. But some image degradation occurred especially at high compression ratio. To reduce this degradation, the MSC uses NUC (Non-uniformity Correction) Unit. This unit correct CCD (Charge Coupled Device)'s high-frequency non-uniformity. So high frequency contents of image can be minimized and whole system SNR can be maximized. But NUC has some disadvantage either. It decreases entire system reliability by adding one electronic system. Adding NUC also led to difficulty of electronic design, assembly and testability. In this paper, the comparison is performed between on-orbit non-uniform correction and on ground correction. by evaluating NUC advantage for the point of view of image quality. Using real MSC parameter and proper model, considerable reference point for the system design came to possible.

  • PDF