• Title/Summary/Keyword: optoelectronics

Search Result 251, Processing Time 0.027 seconds

Effects of Se/(S+Se) Ratio on Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Film Solar Cells Fabricated by Sputtering

  • Park, Ju Young;Hong, Chang Woo;Moon, Jong Ha;Gwak, Ji Hye;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.75-79
    • /
    • 2015
  • Recently, $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) has been received a tremendous attraction as light absorber material in thin film solar cells (TFSCs), because of its earth abundance, inexpensive and non-toxic constituents and versatile material characteristics. Kesterite CZTSSe thin films were synthesized by sulfo-selenization of sputtered Cu/Sn/Zn stacked metallic precursors. The sulfo-selenization of Cu/Sn/Zn stacked metallic precursor thin films has been carried out in a graphite box using rapid thermal annealing (RTA) technique. Annealing process was done under sulfur and selenium vapor pressure using Ar gas at $520^{\circ}C$ for 10 min. The effect of tuning Se/(S+Se) precursor composition ratio on the properties of CZTSSe films has been investigated. The XRD, Raman, FE-SEM and XRF results indicate that the properties of sulfo-selenized CZTSSe thin films strongly depends on the Se/(S+Se) composition ratio. In particular, the CZTSSe TFSCs with Se/(S+Se) = 0.37 exhibits the best power conversion efficiency of 4.83% with $V_{oc}$ of 467 mV, $J_{sc}$ of $18.962mA/cm^2$ and FF of 54%. The systematic changes observed with increasing Se/(S+Se) ratio have been discussed in detail.

A Short Wavelength Filter Based on Dissimilar Dispersive Property Between a Thermally Expanded Cored Fiber and an External Medium (측면 연마된 열확산 코어 광섬유와 외부 물질의 분산 특성 차이를 이용한 단파장 통과 필터)

  • Kim, Kwang-Taek;Lee, Kyu-Hyo;Shin, Eun-Soo;Hwangbo, Seung;Sohn, Kyung-Rak;Kim, Jeong-Geun;Lee, Dong-Ho;Song, Jae-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.494-499
    • /
    • 2005
  • We have demonstrated a fiber short-wavelength filter with a good cut-off property using dissimilar dispersive properties between? a thermally expanded cored fiber and an external medium. Side-polishing is applied to coupling between the fiber and the external medium. The experimental results revealed that the bend edge wavelength can be adjusted by controlling the degree of core expansion. Futhermore, the sharpness of wavelength response? was significantly? improved by employing expanded core fiber instead of a conventional single mode fiber. Tuning range of the band edge wavelength exceeded 400 m based on thermo-optic effect of the external medium.

Influence of Process Conditions on Properties of Cu2O Thin Films Grown by Electrodeposition (전착법을 이용한 Cu2O 박막 형성 및 공정 조건에 따른 특성 변화)

  • Cho, Jae Yu;Ha, Jun Seok;Ryu, Sang-Wan;Heo, Jaeyeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • Cuprous oxide ($Cu_2O$) is one of the potential candidates as an absorber layer in ultra-low-cost solar cells. $Cu_2O$ is highly desirable semiconducting oxide material for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and high absorption coefficient that absorbs visible light of wavelength up to 650 nm. In addition, $Cu_2O$ has other several advantages such as non-toxicity, low cost and also can be prepared with simple and cheap methods on large scale. In this work, we deposited the $Cu_2O$ thin films by electrodeposition on gold coated $SiO_2/Si$ wafers. We changed the process conditions such as pH of the solution, applied potential on working electrode, and solution temperature. Finally, we confirmed the structural properties of the thin films by XRD and SEM.

Fabrication of Cu2SnS3 (CTS) thin Film Solar Cells by Sulfurization of Sputtered Metallic Precursors (스퍼터법을 이용한 메탈 전구체기반의 Cu2SnS3 (CTS) 박막 태양전지 제조 및 특성 평가)

  • Lee, Ju Yeon;Kim, In Young;Minhao, Wu;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.135-139
    • /
    • 2015
  • $Cu_2SnS_3$ (CTS) based thin film solar cells (TFSCs) are of great interest because of its earth abundant, low-toxic and eco-friendly material with high optical absorption coefficient of $10^4cm^{-1}$. In this study, the DC sputtered precursor thin films have been sulfurized using rapid thermal annealing (RTA) system in the graphite box under Ar gas atmosphere for 10 minute. The systematic variation of sulfur powder during annealing process has been carried out and their effects on the structural, morphological and optical properties of CTS thin films have been investigated. The preliminary power conversion efficiency of 1.47% with a short circuit current density of $33.9mA/cm^2$, an open circuit voltage of 159.7 mV, and a fill factor of 27% were obtained for CTS thin film annealed with 0.05g of S powder, although the processing parameter s have not yet been optimized.

Se Incorporation in VTD-SnS by RTA and Its Influence on Performance of Thin Film Solar Cells

  • Yadav, Rahul Kumar;Kim, Yong Tae;Pawar, Pravin S.;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.33-38
    • /
    • 2022
  • Planner configuration thin film solar cells (TFSCs) with SnS/CdS heterojunction performed a lower short-circuit current (JSC). In this study, we have demonstrated a path to overcome deficiency in JSC by the incorporation of Se in the SnS absorber. We carried out the incorporation of Se in VTD grown SnS absorber by rapid thermal annealing (RTA). The diffusion of Se is mostly governed by RTA temperature (TRTA), also it is observed that film structure changes from cube-like to plate-like structure with TRTA. The maximum JSC of 23.1 mA cm-2 was observed for 400℃ with an open-circuit voltage (VOC) of 0.140 V for the same temperature. The highest performance of 2.21% with JSC of 18.6 mA cm-2, VOC of 0.290 V, and fill factor (FF) of 40.9% is observed for a TRTA of 300℃. In the end, we compare the device performance of Se- incorporated SnS absorber with pristine SnS absorber material, increment in JSC is approximately 80% while a loss in VOC of about 20% has been observed.

Single cell gap polymer-stabilized blue-phase transflective LCDs using internal nanowire grid polarizer

  • Cui, Hong-Qing;Ye, Zhi-Cheng;Hu, Wei;Lin, Xiao Wen;Chung, T.C.;Jen, Tean-Sen;Lu, Yan-Qing
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.115-119
    • /
    • 2011
  • Optically isotropic liquid crystal (LC) mixture such as blue-phase LC and nanostructured LC composites exhibit the advantages of fast response time, high contrast ratio and wide-viewing angle due to the induced birefringence along the horizontal electric field. Utilizing this mixture, a novel single cell gap in-plane switching-type polymer-stabilized blue-phase transflective liquid crystal display by embedding the nanowire grid polarizer as a polarization-dependent reflective polarizer in the R region is proposed. This device can be used as a normal black mode without any quarter-wave plate or patterned in-cell phase retarder. Moreover, the transmittance is identical to the reflectance so that it will be suitable for single gamma driving. Detailed electro-optic performances, such as voltage-dependent light efficiency and viewing angle of the proposed device configuration, are investigated.

Control the Work Function and Plasmon Effect on Graphene Surface Using Metal Nanoparticles for High Performance Optoelectronics

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.166.1-166.1
    • /
    • 2014
  • We have controlled the graphene surface in two ways to improve the device performance of optoelectronics based on graphene transparent conductive films. We controlled multilayer graphene (MLG) work function and localized surface plasmon resonance wavelength using a silver nanoparticles formed on graphene surface. Graphene substrates were prepared using a chemical vapor deposition and transfer process. Various size of silver nanoparticles were prepared using a thermal evaporator and post annealing process on graphene surface. Silver nanoparticles were confirmed by using scanning electron microscopy (SEM). Work functions of graphene surface with various sizes of Ag nanoparticles were measured using ultraviolet photoelectron spectroscopy (UPS). The result shows that the work functions of MLG could be controlled from 4.39 eV to 4.55 eV by coating different amounts of silver nanoparticles while minimal changes in the sheet resistance and transmittance. Also the Localized surface plasmon resonance (LSPR) wavelength was investigated according to various sizes of silver nanoparticles. LSPR wavelength was measured using the absorbance spectrum, and we confirmed that the resonance wavelength could be controlled from 396nm to 425nm according to the size of silver nanoparticles on graphene surface. To confirm improvement of the device performance, we fabricated the organic solar cell based on MLG electrode. The results show that the work function and plasmon resonance wavelength could be controlled to improve the performance of optoelectronics device.

  • PDF

Measurement of Effective Refractive Index of Anodic Aluminum Oxide Using a Prism Coupler

  • Gong, Su-Hyun;Cho, Y.H.;Stolz, Arnaud;Gokarna, Anisha;Dogheche, Elhadj;Ryu, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.195-195
    • /
    • 2010
  • In recent years, Anodic aluminum oxide(AAO) has become popular and attractive materials. It can be easily fabricated and self-organized pore structures. It has been widely used as a biosensor membrane, photonic crystal for optical circuit and template for nanotube growth etc. In previous papers, the theory was developed that AAO shows anisotropic optical properties, since it has anisotropic structure with numerous cylindrical pores. It gives rise to the anisotropy of the refractive index called as birefringence. It can be used as conventional polarizing elements with high efficiency and low cost. Therefore, we would like to compare the theory and experimental results in this study. One method which can measure effective refractive index of thin film is the prism coupling technique. It can give accurate results fast and simply. Furthermore, we can also measure separately the refractive index with different polarization using polarization of the laser (TE mode and TM mode). We calculated the effective refractive index with effective medium approximations (EMAs) by pore size in the SEM image. EMAs are physical models that describe the macroscopic system as the homogeneous and typical method of all mean field theories.

  • PDF

Design and fabrication of the surface plasmon fiber polarizer (표면 플라즈몬 광섬유 편광기 설계 및 제작)

  • Lee, Jun-Ock;Kim, Cheol-Ho;Kim, Kwang-Taek;Kwon, Kwang-Hee;Song, Jae-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.169-174
    • /
    • 2003
  • We report theoretical and experimental investigation of a polarizer made of single mode side-polished fiber covered with a metal film. The influence of the metal film thickness and the refractive index of overlay on the device performance has been analyzed in terms of the normal mode theory. Based on the theoretical prediction, a polarizer with 40 ㏈ of polarization extinction ratio and 0.5 ㏈ insertion loss at optical communication wavelength has been realized.