The real option pricing theory has emerged as the new investment decision-making techniques superceding the traditional discounted cash flow techniques and thus has greatly received muck attention from academics and practitioners in these days the theory has been widely applied to a variety of corporate strategic projects such as a new drug R&D, an internet start-up. an advanced manufacturing system. and so on A lot of people who are interested in the real option pricing theory complain that it is difficult to understand the true meaning of the real option value. though. One of the most conspicuous reasons for the complaint may be due to the fact that there exit many different ways to calculate the real options value in this paper, we will present a replicating portfolio method. a risk-neutral probability method. a risk-adjusted discount rate method (quasi capital asset pricing method). and an opportunity cost concept-based method under the conditions of a binomial lattice option pricing theory.
Option pricing theory developed by Black and Sholes depends on an arbitrage opportunity argument. An investor can exactly replicate the returns to any option on that stock by continuously adjusting a portfolio consisting of a stock and a riskless bond. The value of the option equal the value of the replicating portfolio. However, transactions costs invalidate the Black-Sholes arbitrage argument for option pricing, since continuous revision implies infinite trading, Discrete revision using Black-Sholes deltas generates errors which are correlated with the market, and do not approach zero with more frequent revision when transactions costs are included. Stochastic calculus serves as a fundamental tool in the mathematical finance. We closely look at the utility maximization theory which is one of the main option valuation methods. We also see that how the stochastic optimal control problems and their solution methods are applied to the theory.
This paper approaches the problem of option pricing in an incomplete market, where the underlying asset price process follows a compound Poisson model. We assume that the price process follows a compound Poisson model under an equivalent martingale measure and it converges weakly to the Black-Scholes model. First, we express the option price as the expectation of the discounted payoff and expand it at the Black-Scholes price to obtain a pricing formula with three unknown parameters. Then we estimate those parameters using the market option data. This method can use the option data on the same stock with different expiration dates and different strike prices.
This paper suggests the price of vulnerable European option under a constant elasticity of variance model by using asymptotic analysis technique and obtains the approximated solution of the option price. Finally, we illustrate an accuracy of the vulnerable option price so that the approximate solution is well-defined.
This article describes a methodology for evaluating huge aerospace R&D investments using the real options pricing method. Option pricing has been proposed as a useful approach for modeling investment in R&D. Two important features of R&D investments are that an R&D project takes time to complete and that the outcome of R&D investments is highly uncertain. This makes the analysis of R&D investments difficult. Traditional tools for project evaluation, like IRR or the NPV, are inadequate for coping with the high uncertainty. Hence, In this article I propose a log-transformed binomal lattice method, and it will show that option pricing might be an adequate framework for evaluating such types of aerospace investments.
PURPOSES : This study evaluates the economic value of national highway construction projects using Real Option Pricing Models. METHODS : We identified the option premium for uncertainties associated with flexibilities according to the future's change in national highway construction projects. In order to evaluate value of future's underlying asset, we calculated the volatility of the unit price per year for benefit estimation such as VOTS, VOCS, VICS, VOPCS and VONCS that the "Transportation Facility Investment Evaluation Guidelines" presented. RESULTS : We evaluated the option premium of underlying asset through a case study of the actual national highway construction projects using ROPM. And in order to predict the changes in the option value of the future's underlying asset, we evaluated the changes of option premium for future's uncertainties by the defer of the start of construction work, the contract of project scale, and the abandon of project during pre-land compensation stages that were occurred frequently in the highway construction projects. Finally we analyzed the sensitivity of the underlying asset using volatility, risk free rate and expiration date of option. CONCLUSIONS : We concluded that a highway construction project has economic value even though static NPV had a negative(-) value because of the sum of the existing static NPV and the option premium for the future's uncertainties associated with flexibilities.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제15권1호
/
pp.1-17
/
2011
A new method for option pricing based on the trinomial tree method is introduced. The new method calculates the local average of option prices around a node at each time, instead of computing prices at each node of the trinomial tree. Local averaging has a smoothing effect to reduce oscillations of the tree method and to speed up the convergence. The option price and the hedging parameters are then obtained by the compact scheme and the Richardson extrapolation. Computational results for the valuation of European and American vanilla and barrier options show superiority of the proposed scheme to several existing tree methods.
In traditional financial theory, the discount cash flow model(DCF or NPV) operates as the basic framework for most analyses. In doing valuation analysis, the conventional view is that the net present value(NPV) of a project is the measure of the present value of expected net cash flows. Thus, investing in a positive(negative) NPV project will increase(decrease) firm value. Recently, this framework has come under some fire for failing to consider the options of the managerial flexibilities. Real option valuation(ROV) considers the managerial flexibility to make ongoing decisions regarding the implementation of investment projects and the deployment of real assets. The appeal of the framework is natural given the high degree of uncertainty that firms face in their technology investment decisions. This paper suggests an algorithm for estimating volatility of logarithmic cash flow returns of real assets based on the Black-Sholes option pricing model, the binomial option pricing model, and the Monte Carlo simulation. This paper uses those models to obtain point estimates of real option value with the G7- HSR350X(high-speed train).
본 연구는 기초자산의 수익률이 정규분포가 아닌 급첨분포(leptokurtic distribution)를 따른다고 가정할 경우 옵션의 가격식을 도출한다. 두 정규분포의 확률밀도함수의 선형 결합으로 첨도가 3이 아닌 급첨분포의 확률밀도함수를 모델링하고 이를 이용하여 Black- Scholes 공식의 확장된 형태인 옵션 가격 공식을 유도한다. 본 논문에서 제시한 급첨분포에 의한 옵션가격모형은 변동성 스마일 성질을 설명할 뿐만 아니라 기존의 실증연구에서 제기된 Black-Scholes 옵션가격의 과대 및 과소평가 현상을 설명한다. 마지막으로 본 가격식의 모델적합성을 검증하기 위하여 KOSOI 200 지수옵션의 시장가격으로부터 내재변동성과 내재첨도를 추정한다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제4권2호
/
pp.77-84
/
2000
Black-Scholes equation arising from option pricing in the presence of cost in trading the underlying asset is derived. The transaction cost is chosen precisely and generalized to reflect the trade in the real world. Furthermore the concept of the bandwidth is introduced to obtain the better rehedging. The model with bandwidth derived in this paper can be used to calculate the more accurate option price numerically even if it is nonlinear and more complicated than the models shown before.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.