• Title/Summary/Keyword: optimum weight

Search Result 2,587, Processing Time 0.026 seconds

The Need for Weight Optimization by Design of Rolling Stock Vehicles

  • Ainoussa, Amar
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.124-126
    • /
    • 2009
  • Energy savings can be achieved with optimum energy consumptions, brake energy regeneration, efficient energy storage (onboard, line side), and primarily with light weight vehicles. Over the last few years, the rolling stock industry has experienced a marked increase in eco-awareness and needs for lower life cycle energy consumption costs. For rolling stock vehicle designers and engineers, weight has always been a critical design parameter. It is often specified directly or indirectly as contractual requirements. These requirements are usually expressed in terms of specified axle load limits, braking deceleration levels and/or demands for optimum energy consumptions. The contractual requirements for lower weights are becoming increasingly more stringent. Light weight vehicles with optimized strength to weight ratios are achievable through proven design processes. The primary driving processes consist of: $\bullet$ material selection to best contribute to the intended functionality and performance $\bullet$ design and design optimization to secure the intended functionality and performance $\bullet$ weight control processes to deliver the intended functionality and performance Aluminium has become the material of choice for modern light weight bodyshells. Steel sub-structures and in particular high strength steels are also used where high strength - high elongation characteristics out way the use of aluminium. With the improved characteristics and responses of composites against tire and smoke, small and large composite materials made components are also found in greater quantities in today's railway vehicles. Full scale hybrid composite rolling stock vehicles are being developed and tested. While an "overdesigned" bodyshell may be deemed as acceptable from a structural point of view, it can, in reality, be a weight saving missed opportunity. The conventional pass/fail structural criteria and existing passenger payload definitions promote conservative designs but they do not necessarily imply optimum lightweight designs. The weight to strength design optimization should be a fundamental design driving factor rather than a feeble post design activity. It should be more than a belated attempt to mitigate against contractual weight penalties. The weight control process must be rigorous, responsible, with achievable goals and above all must be integral to the design process. It should not be a mere tabulation of weights for the sole-purpose of predicting the axle loads and wheel balances compliance. The present paper explores and discusses the topics quoted above with a view to strengthen the recommendations and needs for the weight optimization by design approach as a pro-active design activity for the rolling stock industry at large.

  • PDF

Biochemical Characters of Polygalacturonase Produced by Botryosphaeria dothidea (사과 겹무늬썩음병균(Botryosphaeria dothidea)이 생산하는 Polygalacturonase의 생화학적 특성)

  • 박석희;서상곤;이창은
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.312-317
    • /
    • 1995
  • The polygalacturonase (PG) production in rotten apples by Botryosphaeria dothidea was purified by using gel filtration and ion exchange column chromatography, and the biochemical characters of PG were investigated. The purified PG appeared as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with approximate molecular weight of 49 kilodalton (kDa). The molecular weight was equal to the native molecular weight estimated by gel filtration. The Km and Vmax values of PG were 0.51 mg/ml and 90.9 $\mu$M/min/ml, respectively. Optimum pH was 4.0~5.0, and the PG activity was stable from pH 5.0~10.0. Optimum temperature of the enzyme activity was 4$0^{\circ}C$. The PG activity was relatively stable at 2$0^{\circ}C$, but it was reduced 45% at 4$0^{\circ}C$ and completely inactivated at 8$0^{\circ}C$. The PG activity was considerably inhibited by Cu2+, Zn2+, SDS and EDTA, whereas it was not effected by Ca2+, K+, Mg2+ or Na+ ions.

  • PDF

Perspective on Mix Weight of Hydrogen Energy Production Using the AHP (AHP를 이용한 수소에너지 제조원별 믹스 전망)

  • Lee, Deok-Ki;Park, Soo-Uk;Kang, Seok-Hun;Choi, Bong-Ha;Boo, Kyung-Jin;Lee, Sang-Sul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.753-758
    • /
    • 2007
  • AHP analysis was carried out to derive the optimum mix weight of hydrogen energy production material presented in a "national vision of the hydrogen economy and the action plan" and aimed to be commercialized by $2030{\sim}2040$ year. Six kinds of hydrogen production materials(natural gas, spare electric energy, fleeting gas, renewable energy, coal, nuclear energy) was selected as subjects of study and the perspective of optimum mix weight was derived through AHP analysis.

  • PDF

Shape Optimization Design of the Knuckle using the Orthogonal Array and the Finite Element Analysis (직교배열표와 유한요소해석을 이용한 너클의 형상최적설계)

  • 박영철;이권희;이동화;이강영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-144
    • /
    • 2003
  • Recently, the weight reduction of vehicle influences its environment problems and performances. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. In this study, the shape optimization using an orthogonal array is performed to determine the design of the knuckle which is a part of suspension system. With the material of the weight reduction was achieved by satisfying the constraints of a strength requirement. The orthogonal array of $L_{18}$ is introduced to find the optimum design variables that considers the shape of the knuckle. The characteristic function composed of the objective and the construct is defined to the feasibility. Comparing to the weight of the initial design with steel materials that of optimum design with aluminum alloy material is reduced by 60%.

Effect of Tin Coating on the High Speed Seam Weldability of Thn Gage Sheet Steels (박판 강재의 고속 심 용접성에 미치는 Sn 도금의 영향)

  • 김기철;이목영
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.86-92
    • /
    • 1998
  • High speed wire seam weldability of tin coated thin gage sheet steels was investigated. Thickness and coating weight ranges of the test materials were 0.21~0.35mm and 1.1/1.1~2.8/11.2g/$m^2$, respectively. Test results indicated that the surface roughness value, Rz decreased as increasing the coating weight. The Rz was thought to be one of the important factors to influence the optimum welding condition range, $\triangle$Q. The $\triangle$Q showed close relationship with welding conditions such as welding pressure and travel speed. Higher welding pressure widened the $\triangle$Q while higher travel speed reduced the $\triangle$Q value. Results also demonstrated that tin coating weight should be optimized based on the weldability or the serviceability after welding. At th HAZ of sheet materials with thinner coating layer, tin depleted zone was produced since molten film of the coating material on the base metal agglomerated by the surface tension, which could result in reducing the corrosion resistance of the HAZ in the service environment.

  • PDF

Minimum-weight design of non-linear steel frames using combinatorial optimization algorithms

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.201-217
    • /
    • 2007
  • Two combinatorial optimization algorithms, tabu search and simulated annealing, are presented for the minimum-weight design of geometrically non-linear steel plane frames. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) specification, maximum and interstorey drift constraints and size constraints for columns were imposed on frames. The stress constraints of AISC Allowable Stress Design (ASD) were also mounted in the two algorithms. The comparisons between AISC-LRFD and AISC-ASD specifications were also made while tabu search and simulated annealing were used separately. The algorithms were applied to the optimum design of three frame structures. The designs obtained using tabu search were compared to those where simulated annealing was considered. The comparisons showed that the tabu search algorithm yielded better designs with AISC-LRFD code specification.

Optimal Design of Laminated Composite Beams with Open Cross Section (복합 적층 개단면 보의 최적설계)

  • 배하록;홍순호;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.309-316
    • /
    • 1999
  • Laminated composite plates are very useful in various fields of engineering where high strength-to-weight and stiffness-to-weight ratios are required. Design optimization of composite structures has gained importance in recent years as the engineering applications of fiber reinforced materials have increased and weight savings has become an essential design objective. However, due to the anisotropic material properties of laminated composite structure it is very difficult to analyze and design. In this study, numerical optimization technique together with the finite element method is used to find the optimum design of FRP. Various combination of fiber orientation for the laminate layers are investigated and several local optimum solutions are found.

  • PDF

System RBDO of truss structures considering interval distribution parameters

  • Zaeimi, Mohammad;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.81-96
    • /
    • 2019
  • In this paper, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All random variables are described by random distributions but some key distribution parameters of them which lack information are defined by variation intervals. For system RBDO of trusses, the first order reliability method, as well as monotonicity analysis and the branch and bound method, are utilized to determine the system failure probability; and Improved (${\mu}+{\lambda}$) constrained differential evolution (ICDE) is employed for the optimization process. System reliability assessment of several numerical examples and system RBDO of different truss structures are proposed to verify our results. Moreover, the effect of different classes of interval distribution parameters on the optimum weight of the structure and the reliability index are also investigated. The results indicate that the weight of the structure is increased by increasing the uncertainty level. Moreover, it is shown that for a certain random variable, the optimum weight is more increased by the translation interval parameters than the rotation ones.

Effects of In Vitro Degradation on the Weight Loss and Tensile Properties of PLA/LPCL/HPCL Blend Fibers

  • Yoon Cheol Soo;Ji Dong Sun
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2005
  • PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly ($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly ($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending and spinning for bioab­sorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect of in vitro degra­dation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solu­tion at pH 7.4 and 37$^{\circ}C$ for 1-8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of $5 wt\%, HPCL contents of $35 wt\%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about $93.5\% even at hydrolysis time of 2 weeks.

Optimization for the Least Weight, Precast Prestressed Gerber′s U-Beams (최소자중 프리캐스트 프리스트레스트 게르버 U형보의 최적화)

  • 박현석;김인규;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.373-381
    • /
    • 2002
  • The cost on transmission and erection of the precast prestressed concrete members largely depends on the weight of them. Optimum process is performed on a U-beam section to control the prestressing force, to reduce the self-weight, and to meet the required strength and stability. The strength, deflection, and concrete stress at the top and bottom of the section considered are required to check according to each construction step in this process. The weight of the original rectangular concrete beam could be reduced up to 39∼50% from this method. Two full scale prototype U-beams were proposed and tested in this study. It was found that the U-beams in the test showed good performance in strength and serviceability within the limits of ultimate strength design method.