• 제목/요약/키워드: optimum sowing date

검색결과 67건 처리시간 0.032초

Influence of Sowing and Harvest Date on Yield and Nutritional Quality of Forage Rye

  • Kwon, Byung-Sun;Shin, Dong-Young
    • Plant Resources
    • /
    • 제7권3호
    • /
    • pp.206-210
    • /
    • 2004
  • In order to find out the optimum harvest (dipping) date combined with sowing date on yield and nutrient quality of forage rye which is suitable at the Southern part of Korea, Paldanghomil variety was grown Sep. 2001 to May 2002 at Sunchon National University, and yield and nutrient quality of plant were observed. As harvest date and sowing date were delayed, the plant length was longest, number of leaves per plant was increased in the time of May 20 clipping. Fresh yield was the heaviest in the time of May 20 clipping and Oct. l0 sowing, and the most dry matter yield was the heaviest in the time of May 20 clipping and Oct. 10 sowing. Content of crude protein was the highest and that of crude fiber such as NDF, ADF, hemicellulose, cellulose and lignin were the lowest in the late time of clipping and sowing. Further more IVDMD was high and dry matter yield and digestible dry matter yield were the highest in the time of May 20 dipping and Oct. 10 sowing. Judging from the results reported above, at optimum harvest (dipping) date combined with sowing date for yield and nutrient quality of forage rye seemed to be the time of May 20 clipping and Oct. 10 sowing.

  • PDF

Effect of sowing date and planting distance on the growth and yield of sesame in the middle area of Korea.

  • Kim, Ki Hyun;Youn, Cheol Ku;Kim, In Jae;Lee, Hee Do;Hong, Seong Taek;Hong, Eui Yon;Woo, Sun Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.250-250
    • /
    • 2017
  • Studies were conducted to select the optimum sowing date and planting density of sesame in the middle area of Korea. To select the optimum sowing date, sesame seeds sowed from 20 April to 7 July with 15-day intervals. To select the optimum planting density, sesame seeds investigated under four different planting distances ($30{\times}10,\;30{\times}15,\;30{\times}20$, and $30{\times}25cm$)respectively in the experimental field. As seeding date was delayed, days to emergence were shortened flowering and maturing date were delayed. Delayed sowing date resulted in decreased length, capsule setting stem length and number of capsules, and branchs per plant. Number of Capsules was high sowing date on 5 May in the range of 90~95ea/plant in sesame. Also yield of sesame seeds was most high on 5 May in the range of 142kg/10a by sowing date. Sowing date up to 5 May showed no effect on grain yield, but from 5 June to 5 July decreased 27%, 68% and 86%, respectively. For all planting distances, weight of 1,000 grain was not significantly different. However, number of branches and capsules tended to increase. Number of Capsules was high planting distance of $30{\times}20cm$ and $30{\times}25cm$ in the range of 146.7~165.7ea/plant in the Geonbaekkae. Areumkkae also showed the same tendency on planting distance of $30{\times}20cm$ and $30{\times}25cm$ in the range of 122.0~147.5ea/plant, respectively. Yield of Geonbaekkae and Areumkkae seeds was most high 116kg/10a, 117kg/10a, respectively on planting distance $30{\times}20cm$. Decreased in the planting distance of sesame has increased the incidence of disease and lodging. Based on the results, we suggest a planting distance of $30{\times}20cm$ maximal growth and yield of sesame in the middle area of Korea. Considering growth characteristics, sesame yield ability, the optimum sowing date was 5 May and optimum planting pattern was founded to be two rows planting in one ridge and planting densities was $30{\times}20cm$.

  • PDF

Effect of Planting Date and Plant Density on Yield and Quality of Industrial Rapeseed in Spring Sowing

  • Kwon, Byung-Sun;Jung, Dong-Soo
    • Plant Resources
    • /
    • 제8권2호
    • /
    • pp.91-95
    • /
    • 2005
  • In spring, to determine the optimal planting date and plant density of rapeseed in southern areas of Korea. $Taiwan^{\#1}$ variety for spring sowing, the highest yielding variety was grown under five different planting date and plant density. Yield components such as plant height, ear length, number of seedling stand per $m^2$, number of per ear and seed set percentage were highest at the plots with Mar. 5 of planting date and 50/20cm drilling of plant density. Yield of seed, oil, gas and 1,000 grains weight and erucic acid content were highest at the Mar. 5 of planting date and 50/20cm drilling of plant density. Judging from the results reported above, at optimum planting date and plant density of rapeseed seemed too be Mar. 5 of planting date and 50/20cm plant density in spring sowing.

  • PDF

Effect of Sowing Date on Growth Characteristics and Dry Matter Yield of Alfalfa in a Dry Paddy Field

  • Lee, Bae Hun;Lee, Ki Won;Kim, Ji Hye;Lee, Se Young;Chang, Hyoung Ki;Park, Hyung Soo
    • 한국초지조사료학회지
    • /
    • 제42권3호
    • /
    • pp.169-175
    • /
    • 2022
  • This study aimed to examine the changes in dry matter yield and growth characteristics of alfalfa (Medicago sativa L.) in response to variations in sowing dates during the autumn season of 2021-22 in a dry paddy field of Chilbo-myeon, Jeongeup-si, Jeollabuk-do. Treatments comprised four sowing dates at 10-day intervals, i.e., October 8, October 18, October 28, and November 8, 2021. The winter survival rate of alfalfa showed a significant difference between different treatments but was at a satisfactory level for all (p<0.05). The winter survival rate for the fourth sowing date, a month later than the first sowing date, was approximately 11.7% lower than that for the first sowing date. The plant height ranged between 82.3-93.1 cm and 60.5-63.7 cm at the first and second harvest, respectively, smaller at the second harvest than at the first harvest. The total dry matter yield of alfalfa was the highest at 13,316 kg/ha for the first sowing date, and the later the sowing date, the lower the dry matter yield. The protein content of alfalfa ranged between 13.6-17.3% in the first harvest, lower than the standard alfalfa protein content of 20% or more. In relative feed value, the first sowing (Oct. 8) was the most significantly higher in the first harvest (p<0.05). These results suggest that the early and mid-October sowing dates are optimum for sowing alfalfa during autumn and result in improved plant growth, dry matter yield, protein content, and winter survival compared to those at later sowing dates. Therefore, dry paddy fields can be safely employed for alfalfa cultivation with sowing dates in early and mid-October during autumn.

Effect of Sowing Date and Plant Density on Yield of Rapeseed in Autumn Sowing

  • Kwon Byung-Sun;Choi Seung-Sun;Lim Jung-Mook;Choi Gab-Lim;Kim Sang-Kon
    • Plant Resources
    • /
    • 제8권3호
    • /
    • pp.258-262
    • /
    • 2005
  • In autumn, to determine the optimal planting date and plant density of rapeseed in southern areas of Korea, Yudal variety for autumn sowing, the highest yielding variety was grown under three different planting dates and five different plant densities. Yield components such as plant height, ear length, number of seedling stand per $m^2$, number of branches and pod length were highest at the plots with Sep. 30 of planting date and 30/20 cm drilling of plant density. Yield of seed, oil and 1,000 grains weight were highest at the Sep.30 of planting date and 30/20 cm drilling of plant density. Judging from the results reported above, at optimum planting date and plant density of rapeseed seemed to be Sep.30 of planting date and 30/20cm plant density in autumn sowing.

  • PDF

비닐피복과 파종기 이동에 따른 결명의 생육 및 수량 (Growth and Yield as Affected by Vinyl Mulching and Sowing Time in Cassia tora L.)

  • 권병선;박희진;임준택;신동영
    • 한국작물학회지
    • /
    • 제35권4호
    • /
    • pp.315-319
    • /
    • 1990
  • 결명을 비닐피복과 무피복 재배하에서 파종기 이동에 따른 생육 및 수량의 특성을 검토하여 남부지방의 결명재배 체계확립을 위한 기초자료로 이용하고자 시험했던 바 그 결과를 다음과 같다. 1. 출현일수와 성숙기는 무피복구보다 비닐피복구에서 빨랐고 특히 성숙기는 비닐피복구가 무피복구에 비해 약 30일 정도 빨랐으며 특히 4월 10일 파종기에서 가장 빨랐다. 2. 경장, 경직경, 분지수, 1주협수, 협장, 1협립수 등의 모든 형질이 비닐피복구에서 우수하였으며 이들 생육특성 중에서 경직경과 분지수는 파종기가 늦으면 작거나 적어지는 경향이었으나 경장, 1주협수, 협장, 1협립수 등의 형질은 4월 10일을 기점으로 이보다 빠르거나 늦으면 작거나 적어지는 경향이었다. 3. 천립중과 종실수량 역시 비닐피복구에서 높았으며 4월 10일 파종구를 기점으로 이보다 파종기가 빠르거나 늦으면 적어지는 경향이었다. 4. 비닐피복과 무피복 재배하에서 파종기에 따른 유용형질들의 분산분석에서 높은 유의성의 변이를 보였고 이들의 상호작용에서도 모든 형질에서 유의성이 인정되었다.

  • PDF

사초용 유채 생산성과 사료가치에 관한 연구 VI. 파종기별 예취시기가 수량 및 영양가치에 미치는 영향 (Studies on Productivity and Nutrient Quality of Forage Rape (Brassica napus Subsp. oleifera) VI. Influence of Sowing and Harvest Date on Yield and Nutritional Quality)

  • 안계수;권병선;이정일
    • 한국작물학회지
    • /
    • 제34권4호
    • /
    • pp.335-340
    • /
    • 1989
  • 본 시험은 남부지방에 적합한 사초용유채의 파종기별 예취시기가 수량 및 영양가치에 미치는 영향을 구명하기 위하여 Velox를 공시하여 실험하였던바 그 결과를 요약하면 다음과 같다. 1. 경태를 제외한 초장, 분지수, 주경엽수의 형질들은 파종기와 예취시기가 늦을수록 우수하였다. 2. 생초수량은 9월 하순에 파종하여 개화기인 4월 하순에 예취한 구가 가장 높았으며, 건물수량은 파종기와 예취시기가 늦을수록 높아서 9월 하순에 파종하여 만개기인 5월 초순에 예취한 구가 가장 높았다. 3, 조단백질함량은 파종기가 늦을수록 높았고, 예취시기는 늦을수록 급격히 저하되었으며, 9월 하순에 파종하여 추태기인 4월 초순에 예취한 구가 가장 높았었다. 4. NDF, ADF, hemicellilose, cellulose 및 lignin 등의 조섬유함량은 파종기가 늦을수록 저하되었고, 예취시기가 늦을수록 높았었다. 5. IVDMD은 조섬유와 같은 경향이었고, 가소화건물수량은 9월 하순에 파종하여 개화기인 4월 하순에 예취한 구가 가장 높았었다.

  • PDF

Effects of Sowing Date on Growth and Yield of Schizonepeta tenuifolia Briquet in Southern Part of Korea

  • Park, Hee-Jin;Kwon, Byung-Sun
    • Plant Resources
    • /
    • 제4권2호
    • /
    • pp.97-101
    • /
    • 2001
  • This study was carried out to determine the effect of sowing time on the flowering, growth and yield of Schizonepeta tenuifolia Briquet. Emergence and flowering dates in the sowing time from March 30 to April 30 were earlier than those of the other sowing times. In the sowing time from March 30 to April 30, length and diameter of main stem, number of node per main stem, number of branch per plant and fresh, and dry weight of stem were greater than those of the other sowing times. Yield components such as ear length, main stem length and diameter, branches per plant, number of node and ears per plant, yield of stem in fresh and dry were the highest at the sowing time from March 30 to April 30. Optimum sowing time of Schizonepeta tenuifolia Briquet were shown to be from March 30 to April 30 in southern areas of Korea.

  • PDF

Effect of planting density and seeding date on the tiller occurrence, growth and yield of sorghum (Sorghum bicolor L.)

  • Han, Tae Kyu;Yoon, Seong Tak;Jeong, In Ho;Kim, Young Jung;Yu, Je Bin;Yangjing, Yangjing;Ye, Min Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.348-348
    • /
    • 2017
  • This experiment was conducted to investigate the aspect of tiller occurrence, growth and yield of sorghum according to planting density and sowing date. The subject of this experiment is to supply basic data to inhibit non-productive tillers uneconomical and cumbersome for mechanical harvesting. Also another subject was to evaluate optimum planting density and sowing date in central district area. Total number of tillers was more in 80cm ridge than 60cm ridge and it was increased as the planting distance was wider from 15cm to 30cm on the each ridge. Ratio of effective tillers was higher in 60cm ridge than 80cm ridge and it was decreased as planting distance was wider from 15cm to 30cm. The lower the planting density, the more increased total number of tillers, whereas effective tillers were decreased as planting density was high. Average of total number of tillers of three varieties was higher in sowing date of 2 May (1st sowing date), whereas ratio of effective tillers was the highest in sowing date of 23 May (2nd sowing date). Hwanggeumchal showed the highest total number of tillers (1.2 tillers), while Moktaksusu had the lowest total number of tillers (0.8 tillers) among three varieties. There were no significant difference between planting density and days to heading and ripening date from seeding. Culm length increased as planting density was high, but ear length, grains per ear and 1000 grain weight were decreased on the other hand. The highest yield of sorghum per 10a was obtained from $60{\times}20cm$ planting density among 6 planting densities.

  • PDF

Evaluation of Forage Production of Maize with Different Sowing Dates and Ridge Shape for Silage at Paddy Field in the Central Region of Korea

  • Youngchul Yoo;Dae-Woo Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.100-100
    • /
    • 2022
  • This study was conducted in 2021 using Kwangpyeongok and Gangdaok, that showed good yield performance both under upland and lowland conditions in the previous year. The experiments were carried out by sowing on April 22, May 14, May 30, June 19, and July 10, with aim to determine optimum sowing date in central region of Korea. The growing degree days (GDD) required to read the flowering stage were 1375.5-1725.3℃ for upland and 1582.7-1982.4℃ for lowland condition. The lowest GDD was observed in July 10 sowing regardless of ridge formation both under lowland and upland conditions for Kwangpyeongok. However, Gangdaok showed the lowest GDD under no-ridge in lowland and high-ridge in upland, both of which were sown on June 19. The difference in GDD between no-ridge and high-ridge treatment was little depending on the sowing date. In both lowland and upland, there was no significant difference between no-ridge and high-ridge treatments in stover dry matter, ear dry matter, and TDN between no-ridge and high-ridge treatments. Under upland condition, no significant difference in biomass and TDN was observed among sowing date treatments and between varieties. Under lowland condition, biomass production was severely reduced in May 30 sowing treatment, whereas no varietal difference was observed. Reduced biomass in May 30 sowing treatment may be due to excess waterlogging and lodging by rainfall.

  • PDF