• Title/Summary/Keyword: optimum site

Search Result 485, Processing Time 0.029 seconds

Groundwater of bed rocks in South Korean Penninsula (한반도의 암반 지하수에 관한 연구)

  • 한정상
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.73-81
    • /
    • 1981
  • More than 650 numbers of water well ranging in depth from 100M to 200M were installed in South Korean Penninsula during the last decade for the purpose of industrial use and municipal water supply. Those data were compiled and synthesized by writer to determine their hydrogeologic occurences in accordance with their geologic and areal characteristics. Rocks yielding the deep seated ground water beared in the geologic primary and secondary porosities are classified into 6 groups according to their geologic, hydrogeologic, and topographic characteristics, that are: volcanic, sedimentary, meta-sediment and/or schist, andesitic, gneissic, and granitic rocks. The order of ground water productivity of the groups is as written above. Even granitic rocks including porphyries, granite, and intermediate and basic plutonic rocks is considered to be the most poorest ground water yielding group among 6, it's average yield form a single well with average drilling depth of 116M is about 225 cubic meters per day if it's drilling site is properly located. Generally speaking, seizable geologic structures such as fractured, sheared, and faulted zone at the flat surface and valley center yield almost 310% more of deep seated bet rock ground water in comparision with minor structures of joints, bedding planes, and so on that are occured at high land. 50 numbers of water well drilled at crystalline rocks were specially checked and measured it's ground water yie 1ds at each drilled depth to determine each interval's productivity while hammer drilling was going on. The results indicate that the specific capacity and yield of each water well at a depth below 70M to 80M was almost neglegible. It means that optimum well depth of crystalline rocks, except the area having seizable geologic structures, shall be not deeper than 80M.

  • PDF

Estimation of Optimal Harvest Volume for the Long-term Forest Management Planning using Goal Programming (장기산림경영계획의 목표수확량 산출을 위한 목표계획법의 적용)

  • Won, Hyun-Kyu;Kim, Young-Hwan;Kwon, Soon-Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.125-131
    • /
    • 2009
  • To facilitate the sustainable forest management, Forest Service in Korea has assigned 2.9 million hectare forests as 'intensive management forests' and encouraged local governments to develop a strategic management plan for their forests. One of problems for the sustainable forest management in Korea is the skewed distribution of forest age classes. Currently the majority of forestlands in Korea is occupied by age classes III and IV. In this study, we intended to find an optimum harvest volume, which enable one to make the intensive management forest in Youngdong-Gun evenly distributed for the age classes and allow an even harvest volume through a 50 year time horizon. To develop an optimization model, we applied the goal programming technique which is adequate for a multi-purpose management planning. The results indicated that it is necessary to harvest 1.2 million cubic meters in each decade to achieve the most stable distribution of age classes for the study site. The harvest volume target resulted from this study would be used in a management planning or an associated policy making process in the future.

A Study on the Optimum Operating Conditions and Effects of Wastewater Characteristics in Electrochemical Nitrogen Removal Process (질소 제거를 위한 전기화학적 처리 공정의 최적 운전조건 및 폐수 성상에 따른 영향에 관한 연구)

  • Sim, Joo-Hyun;Kang, Se-Han;Seo, Hyung-Joon;Song, Su-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • This study was performed under four operational conditions for nitrogen removal in metal finishing wastewater. The conditions include electrode gap, reducing agent, the recycling of treated wastewater in 1st step and the simultaneous treatment of nitrate and other materials. Result showed that the removal efficiency of $NO_3{^-}-N$ was highest at the electrode gap of 10 mm. As the electrode gap was shorter than 10 mm, the removal efficiency of $NO_3{^-}-N$ decreased due to increasing in concentration polarization on electrode. And, in case that the electrode gap was longer than 10 mm, the removal efficiency of $NO_3{^-}-N$ increased with an increase in energy consumption. Because hydrogen ions are consumed when nitrate is reduced, reducing reaction of nitrate was effected more in acid solution. As 1.2 excess amount of zinc was injected, the removal efficiency of $NO_3{^-}-N$ increased due to increasing in amount of reaction with nitrate. As the effluent from 1st step in the reactor was recycled into the 1st step, the removal efficiency of $NO_3{^-}-N$ increased. Because the zinc were detached from the cathode and concentration-polarization was decreased due to formation of turbulence in the reactor. The presence of $NH_4{^+}-N$ did not affect the removal efficiency of $NO_3{^-}-N$ but the addition of heavy metal decreased the removal efficiency of $NO_3{^-}-N$. As chlorine is enough in wastewater, the simultaneous treatment of nitrate and ammonia nitrogen may be possible. The problem that heavy metal decrease the removal efficiency of $NO_3{^-}-N$ may be solved by increasing current density or using front step of electrochemical process for heavy metal removal.

Immunolocalization of Wound-Inducible Insoluble Acid Invertases in Pea (Pisum sativum L) (완두콩(Pisum sativum L.) 상처에서 유도되는 불용성 산성 인버타제의 면역조직화)

  • Kim, Donggiun;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6425-6431
    • /
    • 2015
  • Invertase, that hydrolyzes sucrose into glucose and fructose, plays a great role in carbohydrate reallocation between the photosynthetic source tissue and various sink tissues. Invertase also occurs in a variety of isoforms for various functions in plants. Insoluble invertases were extracted only in buffer solutions containing high concentrations of salt. Within these classes, acid invertase has an optimum activity at acidic pH (pH 4-5). Induction of insoluble acid invertase (INAC-INV) in leaf, stem, and root tissues in response to physical wounding has been investigated. To detect the localization of INAC-INV within the plant, immunolocalization has been performed. In this study, the accumulation of INAC-INV was noticeable to reach maximum levels on 72 hr after mechanical injuries. INAC-INV was induced in wounded leaves 3 times more than control leaves. Immunolocalization results showed that INAC-INV accumulated in wall appositions and intercellular spaces. INAC-INV was also localized at sieve cell walls in phloem tissues close to the site of wounding. Taken together, this study suggested that INAC-INV induction upon wounding injuries can play a role on responses to the high energy demand for wound healing process.

Development and Field Application of Apparatus for Determination of Limit State Design Strength Characteristics in Weathered Ground (한계상태설계법 지반정수 산정을 위한 풍화대 강도특성 측정장치의 개발 및 현장적용에 관한 연구)

  • Kim, Ki Seog;Kim, Jong Hoon;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.164-179
    • /
    • 2020
  • Applying the limit state design method to geotechnical structures, accuracy and reliability of its design are mainly affected by parameters for geotechnical site characteristics, such as unit weight, Poisson's ratio, deformation modulus, cohesion and frictional angle. When the structures are located in weathered ground, especially, cohesion and frictional angle of ground are closely related with decision of parameters for structures' load and ground's resistance. Therefore, the accurate determination of these parameters, which are commonly obtained from field measurement, such as borehole shear test, are essential for optimum design of geotechnical structures. The 38 case studies, in this study, have been analyzed for understanding the importance of these parameters in designing the ground structures. From these results, importance of field measurement was also ascertained. With these evaluations, an apparatus for determining the strength characteristics, which are fundamental in limit state design (LSD) method, have been newly developed. This apparatus has an improved function as following the ASTM suggestion. Through the field application of this apparatus, the strong point of minimizing the possibility of error occurrence during the measurement has been verified and authors summarized that the essential parameters for LSD can be qualitatively obtained by this apparatus for determination of strength characteristics of weathered ground.

Long-term Assessment of Soil Chemical Properties in Different Soil Texture Orchard Fields in Gyeongnam Province

  • Kim, Min Keun;Sonn, Yeon-Kyu;Kang, Seong-Soo;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Shin, Hyun-Yul;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.240-245
    • /
    • 2015
  • The monitoring of soil fertility changes in orchard is very important for agricultural sustainability. Field monitoring was performed to evaluate the soil chemical properties of 140 orchard (23 sites for sandy loam, 88 sites for loam, 28 sites for silt loam, and 1 site for loamy fine sand) in Gyeongnam province every 4 years from 2002 to 2014. Soil chemical properties such as pH, electrical conductivity, amount of organic matter (OM), available phosphate ($P_2O_5$), lime requirement (LR), exchangeable potassium (K), calcium (Ca), magnesium (Mg), and sodium were analyzed. The amount of OM, exchangeable K, Ca, and Mg were significantly increased as cultivation year increases. The frequency distribution within optimum range of subsoil chemical properties in 2014 was 34.3% for pH, 35.0% for OM, 17.1% for available $P_2O_5$, 22.9% for exchangeable K, 15.7% for exchangeable Ca, and 22.1% for exchangeable Mg. In addition, the available $P_2O_5$ and exchangeable calcium were excess level with portions of 69.3% and 48.6%, respectively. The soil chemical properties in the topsoil and subsoil showed that soil pH was significantly higher in sandy loam soil than those from the loam and silt loam soils. The OM, exchangeable K, Mg, and LR of loam soil were higher than those from the sandy loam soil. These results indicated that a balanced management of soil chemical properties as affected by soil texture can improve the amount of fertilizer applied for sustainable agriculture in orchard field.

Development of the Dredged Sediments Management System and Its Managing Criteria of Debris Barrier (사방댐 준설퇴적물 관리시스템 개발 및 관리기준 제안)

  • Song, Young-Suk;Yun, Jung-Mann;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The dredged sediment management system was developed to have an objective, quantitative and scientific decision for the optimum removal time of dredged sediments behind debris barrier and was set up at the real site. The dredged sediment management system is designed and developed to directly measure the dredged sediments behind debris barrier in the field. This management system is composed of Data Acquisition System (DAS), Solar System and measurement units for measuring the weight of dredge sediments. The weight of dredged sediments, the water level and the rainfall are measured in real time using the monitoring sensors, and their data can be transmitted to the office through a wireless communication method. The monitoring sensors are composed of the rain gauge to measure rainfall, the load cell system to measure the weight of dredged sediments, and water level meter to measure the water level behind debris barrier. The management criteria of dredged sediments behind debris barrier was suggested by using the weight of dredged sediments. At first, the maximum weight of dredged sediments that could be deposited behind debris barrier was estimated. And then when 50%, 70% and 90% of the maximum dredged sediments weight were accumulated behind debris barrier, the management criteria were divided into phases of Outlooks, Watch and Warning, respectively. The weight of dredged sediments can be monitored by using the dredged sediment management system behind debris barrier in real time, and the condition of debris barrier and the removal time of dredged sediments can be decided based on monitoring results.

Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells (고체산화물 연료전지 연료극 및 전해질 미세구조 최적화)

  • Noh, Jong Hyeok;Myung, Jae-ha
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.525-530
    • /
    • 2019
  • The performance and stability of solid oxide fuel cells (SOFCs) depend on the microstructure of the electrode and electrolyte. In anode, porosity and pore distribution affect the active site and fuel gas transfer. In an electrolyte, density and thickness determine the ohmic resistance. To optimizing these conditions, using costly method cannot be a suitable research plan for aiming at commercialization. To solve these drawbacks, we made high performance unit cells with low cost and highly efficient ceramic processes. We selected the NiO-YSZ cermet that is a commercial anode material and used facile methods like die pressing and dip coating process. The porosity of anode was controlled by the amount of carbon black (CB) pore former from 10 wt% to 20 wt% and final sintering temperature from $1350^{\circ}C$ to $1450^{\circ}C$. To achieve a dense thin film electrolyte, the thickness and microstructure of electrolyte were controlled by changing the YSZ loading (vol%) of the slurry from 1 vol% to 5 vol. From results, we achieved the 40% porosity that is well known as an optimum value in Ni-YSZ anode, by adding 15wt% of CB and sintering at $1350^{\circ}C$. YSZ electrolyte thickness was controllable from $2{\mu}m$ to $28{\mu}m$ and dense microstructure is formed at 3vol% of YSZ loading via dip coating process. Finally, a unit cell composed of Ni-YSZ anode with 40% porosity, YSZ electrolyte with a $22{\mu}m$ thickness and LSM-YSZ cathode had a maximum power density of $1.426Wcm^{-2}$ at $800^{\circ}C$.

A Deep-Learning Based Automatic Detection of Craters on Lunar Surface for Lunar Construction (달기지 건설을 위한 딥러닝 기반 달표면 크레이터 자동 탐지)

  • Shin, Hyu Soung;Hong, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.859-865
    • /
    • 2018
  • A construction of infrastructures and base station on the moon could be undertaken by linking with the regions where construction materials and energy could be supplied on site. It is necessary to detect craters on the lunar surface and gather their topological information in advance, which forms permanent shaded regions (PSR) in which rich ice deposits might be available. In this study, an effective method for automatic detection of lunar craters on the moon surface is taken into consideration by employing a latest version of deep-learning algorithm. A training of a deep-learning algorithm is performed by involving the still images of 90000 taken from the LRO orbiter on operation by NASA and the label data involving position and size of partly craters shown in each image. the Faster RCNN algorithm, which is a latest version of deep-learning algorithms, is applied for a deep-learning training. The trained deep-learning code was used for automatic detection of craters which had not been trained. As results, it is shown that a lot of erroneous information for crater's positions and sizes labelled by NASA has been automatically revised and many other craters not labelled has been detected. Therefore, it could be possible to automatically produce regional maps of crater density and topological information on the moon which could be changed through time and should be highly valuable in engineering consideration for lunar construction.

Experimental Study on Deformation Resistance Capacity of SY Permanent Steel Form for RC Beam and Girder under Casting Concrete (SY 비탈형 보 거푸집의 콘크리트 타설시 변형저항성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.605-615
    • /
    • 2021
  • Recently, to shorten construction periods and reduce labor costs, the need for a corrugated beam form in the RC structure is being emphasized. The purpose of this study is to evaluate the deformation performance of SY Beam, a newly developed corrugated beam form work, during concrete casting. The standard cross-sectional shape of SY Beam was determined by modeling the deck structure of various thicknesses using the MIDAS GEN program. As a result, the cross-sectional dimensions of the SY Beam were determined to be 400mm and 450mm in width and height, respectively. A total of three SY Beam specimens were fabricated using steel plate thicknesses of 0.8, 1.0, and 1.2mm. The load conditions applied during casting concrete at the actual site are reflected. The vertical and horizontal displacements of the SY beam were measured during concrete casting. As a result, the vertical displacement showed a tendency to decrease as the thickness increased. Considering both vertical and horizontal displacement, the case with steel plate thickness of 1.2mm is the safest and most immediately applicable to the field. In the future, to secure manufacturability, constructability, and economics, the optimum steel plate thickness should be derived, and additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are required.