• Title/Summary/Keyword: optimum properties

Search Result 3,677, Processing Time 0.029 seconds

Heat transfer analysis for optimization of recording mark on Compact Disk-Recordable (추기형 광디스크에서 최적 기록마크 생성을 위한 열전달 해석)

  • Hong, S.K.;Lee, J.D.;Shin, J.M.;Go, S.R.;Lee, K.H.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.589-595
    • /
    • 2001
  • The present study conducted heat transfer analysis in multi-layer of CD-R. It is necessary to analyze heat transfer during the recording process to find optimum power and write strategy in CD-R. This study investigated effects of several parameters such as recording speed, laser power, layer thickness and thermal property. The calculated results presented temperature distribution in the multi-layer and detailed information of recording characteristics. Optimum laser power was estimated, comparing an optimum mark length with the calculated mark lengths. The results showed that the optimum laser power was influenced significantly by the layer thickness and the thermal properties of the dye.

  • PDF

Behavior of Traveling Vehicle According to Soil Properties (토질특성에 따른 이동차량의 거동)

  • 박영호;김운영
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-136
    • /
    • 1997
  • The fullsized drawbar pull test is carried out in Yeog-gol area to find out the effect of test vehicle's trafficability with the variation of density and water content at the weathered granite soils and water content at the clayey soils. According to the results, it is found that the behavior of optimum drawbar pull is effected not only by water content but also by density. This paper showed the method of determination of optimum points at a curve of drawbar pull varying with the conditons of soils. And it also showed the optimum drawbar pull coefficient and optimum slip varying with the density of the weathered granite soils.

  • PDF

Development and Verification of an Optimum Composition Model for a Synbiotic Fermented Milk Using Sequential Quadratic Programming Techniques

  • Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1490-1495
    • /
    • 2006
  • The purpose of this research was to develop an optimum composition model for a new synbiotic fermented dairy product with high probiotic cell counts, and to experimentally verify this model. The optimum composition model indicated the growth promoter ratio that could provide the highest growth rate for probiotics in this fermented product. Different levels of growth promoters were first blended with milk to improve the growth rates of probiotics, and the optimum composition model was determined. The probiotic viabilities and chemical properties were analyzed for the samples made using the optimal formula. The optimal combination of the growth promoters for the synbiotic fermented milk product was 1.12% peptides, 3% fructooligosaccharides (FOS), and 1.87% isomaltooligosaccharides (IMO). A product manufactured according to the formula of the optimum model was analyzed, showing that the model was effective in improving the viability of both Lactobacillus spp. and Bifidobacterium spp.

Theoretical Derivation of the Optimum Rotation Speed of a Desiccant Rotor (이론적 방법에 의한 제습로터 최적 회전속도의 결정)

  • Lee, Dae-Young;Song, Gwi-Eun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.575-582
    • /
    • 2009
  • The optimum rotation speed of a desiccant rotor is studied theoretically based on a theoretical solution to the heat and mass transfer processes in the desiccant rotor. A simple correlation equation for the optimum rotation speed is derived to show the effects of various parameters including the thermo-physical properties, the geometric dimension, and the operating condition of the desiccant rotor. The theoretical result is compared with existing experimental data to validate the linearization and simplification included in the solution procedure. Based on the theoretical solution, the effects of major parameters on the optimum rotation speed are studied and the fundamental mechanism of the influences is investigated.

Optimization of Prestressed Concrete Beam Section (프리스트레스트 콘크리트 보 단면의 최적설계)

  • 조선규;최외호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.91-101
    • /
    • 2000
  • As the computer related technology evolves a study for a practical use of real structure as well as its hteory for optimum design has been greatly advanced. But the study on optimum design of pre-stressed concrete beam(PSC-beam) bridge for the construction of national roads and highways in Korea is not sufficient. Since a standard section for the PSC-beam is proposed, it is practically used in designing the PSC-beam. It is noticed that the section using the current standard PSC-beam design to be an over-designed with its surplus safety factor. Therefore, it is necessary to consider economical PSC-beam section which automatically satisfies all requirement of design specifications. Thus, in this study, the optimum design methods of PSC-beam are carried out using the gradient-based search method and global search method. As a result of the optimum design method, it was confirmed that the design of PSC-beam has a serious properties to non-linearity and discontinuity. And the section that in economical and efficinet design methods than the current standard design method is proposed.

Oplimum Design Conditions for a Basic Refrigeration Cycle (냉동사이클의 최적 설계조건)

  • Cho, Sung-Whan
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.4
    • /
    • pp.356-361
    • /
    • 1986
  • An optimum design condition for a basic refrigeration cycle is defined as the condition which minimizes the total cost of heat exchanges (condenser and evaporator) and compressor for the refrigeration effect. Thermodynamic properties of ammonia (R717) are approximated by rational functions in order to obtain the optimum condition for a basic refrigeration cycle. Optimum condition depends on the heat capacity rates (mass flow rate times specific heat) of cooling water and brine used in condenser and evaporator. The difference between the cooling water temperature and condensation temperature at the optimum condition increases as the heat capacity rates and the coat of heat exchangers relative to the cost of compressor increase. Numerical examples of optimum conditions are obtained when the condensation temperature is $30^{\circ}C$ and the evaporator temperature is $-10^{\circ}C$.

  • PDF

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

Cure Characteristics, Mechanical Properties, Abrasion Property and Thermal Properties of EVM/EPM Blends Containing Flame Retardants

  • Sung, Il Kyung;Lee, Won Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • The curing behavior, mechanical properties, hot-air aging resistance, abrasion properties,thermal properties, etc., of EVM/EPM/APP (ammonium polyphosphate)/DPER (dipentaerythritol)/EG (expandable graphite) and EVM/EPM/ATH (aluminium trihydroxide) flame retarding systems in ethylene vinyl acetate rubber (EVM) blends with EPM (ethylene propylene rubber) were sequentially examined. For both flame retarding systems, the torque values increased with the content of EPM rubber and with the vulcanization time. As the content of EPM rubber increased, the scorch time became shorter, whereas the optimum cure time followed an increasing trend. For the EVM/EPM/APP/DPER/EG flameretarding system, as the content of EPM rubber increased, the hardness did not change,whereas the tensile strength and elongation at break decreased. A hot-air aging resistance test at $150^{\circ}C$ showed that the heat resistance decreased with the EPM content regardless of the kinds and contents of flame retardants. As the EPM content increased, the abrasion rate became higher and the abrasion resistance of the EVM/EPM/APP/DPER/EG flame retarding systems exceeded that of the EVM/EPM/ATH flame retarding counterparts. In comparison with the EVM/EPM/ATH flame retarding systems, the thermal stability of the EVM/EPM/APP/DPER/EG flame retarding system showed an increasing tendency.

Characterization of jute fibre reinforced pine rosin modified soy protein isolate green composites

  • Sakhare, Karishma M.;Borkar, Shashikant P.
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.191-209
    • /
    • 2022
  • Very slow degradation of synthetic based polymers has created a severe environmental issue that increased awareness towards research in polymers of biodegradable property. Soy protein isolate (SPI) is a natural biopolymer used as matrix in green composites but it has limitations of low mechanical properties and high water sensitivity. To enhance mechanical properties and reduce water sensitivity of Jute-SPI composites, SPI was modified with pine rosin which is also a natural cross-linking agent. 30% glycerol on the weight basis of a matrix was used as a plasticizer. The fibre volume fraction was kept constant at 0.2 whereas the pine rosin in SPI ranged from 5% to 30% of the matrix. The effects of pine rosin on mechanical, thermal, water sensitivity and surface morphology have been characterized using various techniques. The mechanical properties and water absorbency were found to be optimum for 15% pine rosin in Jute-SPI composite. Therefore, Jute-SPI composite without pine rosin and with 15% pine rosin were chosen for investigation through characterization by Fourier transforms infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), X-Ray diffraction (XRD) and Scanning electron microscope (SEM). The surface morphology of the composite was influenced by pine rosin which is shown in the SEM image. TGA measurement showed that the thermal properties improved due to the addition of pine rosin. Antimicrobial test showed antimicrobial property in the composite occurring 15% pine rosin. The research paper concludes that the modification of SPI resin with an optimum percentage of pine rosin enhanced mechanical, thermal as well as water-resistant properties of jute fibre reinforced composites.

Investigation on optimum protection potential of high-strength Al alloy(5456-H116) for application in ships (선박용 고강도 Al합금(5456-H116)의 최적 방식 전위결정에 관한 연구)

  • Kim Sung-Jong;Ko Jae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.157-168
    • /
    • 2006
  • Recently, interest in using Al alloys in ship construction instead of fiber-reinforced plastic (FRP) has increased because of the advantages of A) alloy ships over FRP ships, including high speed, increased load capacity. and ease of recycling. This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. These results will provide reference data for ship design by determining the optimum protection potential regarding hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a Passive film. In a potentiostatic experiment. the current density after 1200 sec in the Potential range of $-0.68\~-1.5\;V$ was low. This low current density indicates the protection potential range. Elongation at an applied potential of 0 V was high in this SSRT. However, corrosion protection under these conditions is impossible because the mechanical properties are worse owing to decreased strength resulting from the active dissolution reaction in parallel parts of the specimen. A film composed of $CaCO_3\;and\;Mg(OH)_2$ confers corrosion resistance. However, at potentials below -1.6 V forms non-uniform electrodeposition coating, since there is too little time to form a coating. Therefore, we concluded that the mechanical properties are poor because the effect of hydrogen gas generation exceeds that of electrodeposition. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.45 to -0.9 V (SSCE).