• Title/Summary/Keyword: optimum properties

Search Result 3,677, Processing Time 0.033 seconds

The Properties of Supper Flowing Concrete using Class C Fly Ash (C급 플라이애쉬를 사용한 초유동 콘크리트 특성)

  • Won, Cheol;Kwon, Yeong-Ho;Kim, Dong-Seok;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.276-282
    • /
    • 1996
  • This study dealt with the properties for fly ash of combined heat power plant and application for concrete industry. For this purpose, fly ash of ulsan combined heat power plant was analyzed for physical and chemical properties and tested the properties of the super flowing concrete. As results of fly ash, contents of SiO2 and Al2O3 in the fly ash of Ulsan were less than those of thermal power plant(Boryung), but contents of CaO were ten times as much as those of Boryung. In order to satisfy the properties of the Super Flowing Concrete using class C fly ash, mixing conditions were determined the optimum water-binder(w/b), volume ratio of fine aggregates(Sr) and coarse aggregates(Gv).

  • PDF

Optimization for Roast Flavour Formation of Platycodon grandiflorum Tea (도라지차의 구수한 향미 발현 최적화)

  • 이기동;주길재;권중호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.752-757
    • /
    • 2000
  • Response surface methodology was used to optimized soaking and roasting conditions and monitor organoleptic properties of roasted Platycodon grandiflorum tea. In soaking and roasting processes based on the central composite design with variations in threonine/sucrose concentration for soaking of Platycodon grandiflorum, roasting temperature and roasting time, coefficients of determination ($R^2$) of the models were above 0.86(p<0.05) in organoleptic properties. The maximum conditions predicted for each corresponding organoleptic properties of roasted Platycodon grandiflorum tea were 1.64% threonine concentration, 137.83$^{\circ}C$ and 27.76 min in aroma, 1.46% threonine concentration, 136.1$0^{\circ}C$ and 25.19 min in taste, and 1.39% threonine concentration, 136.44$^{\circ}C$ and 29.05 min in overall flavour. The optimum condition ranges for organoleptic properties of roasted Platycodon grandiflorum tea were soaking in 1.40~1.64% threonine concentration, and roasting at 136.10~137.9$0^{\circ}C$ for 25.19~29.00 min.

  • PDF

Effect of ultra-fine slag on mechanical and permeability properties of Metakaolin-based sustainable geopolymer concrete

  • Parveen, Parveen;Mehta, Ankur;Saloni, Saloni
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.231-239
    • /
    • 2019
  • The present study deals with the development of metakaolin-based geopolymer concrete (GPC) and thereafter studying the effects of adding ultra-fine slag on its mechanical and permeability characteristics. The mechanical characteristics including compressive, split tensile, flexural strengths and elastic modulus were studied. In addition, permeability characteristics including water absorption, porosity, sorptivity and chloride permeability were studied up to 90 days. The results showed the effective utilization of metakaolin for the development of elevated temperature cured geopolymer concrete having high 3-day compressive strength of 42.6 MPa. The addition of ultra-fine slag up to 15%, as partial replacement of metakaolin resulted in an increase in strength characteristics. Similar improvement in durability properties was also observed with the inclusion of ultra-fine slag up to 15%. Beyond this optimum content of 15%, further increase in ultra-fine slag content affected the mechanical as well as permeability parameters in a negative way. In addition, the relationship between various properties of GPC was also derived.

Effect of Engineering Properties on Resilient Modulus of Cohesive Soil as Subgrade (세립토의 회복탄성계수(Mr)에 대한 지반물성치의 영향)

  • Kim, Dong-Gyou;Lee, Ju-Hyung;Hwang, Young-Cheol;Chang, Buhm-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.67-74
    • /
    • 2013
  • The objective of this study was to identify the effect of engineering properties on the resilient modulus ($M_r$) of cohesive soils as subgrade. Eight representative cohesive soils representing A-6, and A-7-6 soil types collected from road construction sites, were tested in the laboratory to determine their basic engineering properties. The laboratory tests for the engineering properties were Atterberg limits test, sieve analysis, hydrometer test, Standard Proctor compaction test, and unconfined compressive strength test. Resilient modulus test and unconfined compressive strength test were conducted on unsaturated cohesive soils at three different moisture contents (dry of optimum moisture content, optimum moisture content, and wet of optimum moisture content). The increase in moisture content considerably affected the decrease in the resilient modulus. The resilient modulus increased with an increase in maximum unconfined compressive strength, percent of clay, percent of silt and clay, liquid limit and plasticity index. The resilient modulus decreased with an increase in percent of sand.

Study on Mixing Condition of the Rubber Composite Containing Functionalized S-SBR, Silica and Silane : II. Effect of Mixing Temperature and Time (변성 S-SBR Silica-Silane 고무복합체의 배합조건에 대한 연구 : II. 배합온도와 시간의 영향)

  • Jang, Suk-Hee;Kim, Wook-Soo;Kang, Yong-Gu;Han, Min-Hyun;Chang, Sang-Mok
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.103-113
    • /
    • 2013
  • The properties of the rubber composites containing a silane and silica were evaluated by changing the mixing time and temperature, in order to find the optimum mixing conditions. Characteristics of the compounds were evaluated after mixing at $120^{\circ}C$, $140^{\circ}C$, and $160^{\circ}C$ with various mixing time. With increasing of mixing time, mooney viscosity decreased while the bound rubber contents of the compounds increased. Viscosity rise by increased mixing time was bigger at low temperature and the higher the mixing temperature the faster in the formation of bound rubber. With lower mixing temperature of $120^{\circ}C$, cross-linking rate was almost constant. Dynamic viscoelastic properties and dispersity of the compound showed that dispersion of ingredients and reaction was not sufficient with the mixing time of less than 10min. On the contrary, with high temperature, it was obvious that good dynamic and physical properties could be obtained due to sufficient coupling reaction, however it was thought this high temperature is not optimum because of sensitive cross-linking rate and physical properties and excessive formation of bound rubber. Consequently, it was confirmed that the mixing condition of 10min at $140^{\circ}C$ was optimum for the silane coupling reaction and dispersion of functionalized S-SBR containing silica and silane.

Physical Properties of the Horticultural Substrate According to Mixing Ratio of Peatmoss, Perlite and Vermiculite (원예용 상토 재료 피트모스, 펄라이트, 버미큘라이트의 혼합비율에 따른 물리적 특성 변화)

  • Kim, Hyuck-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • The physical properties of horticultural substrate are important for optimal plant growth. The physical properties should be properly maintained during the crop growing season for producing higher yield. This experiment was carried out to evaluate the physical properties of different mixtures from various raw materials as horticultural substrates. The mixtures at the different ratios of peatmoss, perlite and vermiculite subjected to 10:0:0, 8:2:0, 6:4:0, 4:6:0, 2:8:0, 0:8:2, 0:10:0, 0:6:4, 0:4:6, 0:2:8, 8:0:2, 0:0:10, 6:0:4, 4:0:6, 2:0:8, 2:6:2, 2:4:4, 4:2:4, 4:4:2, 6:2:2 and 2:2:6 were prepared and analyzed according to two methods of the European Standardization (EN) and Rural Development Administration (RDA). The optimum range of physical properties of a specific horticultural substrate can be predicted using physical-property-triangle. This triangle can also be used to convert a physical property from the EN method to that from the RDA method. Results showed that the mixture at a ratio of > 60% peatmoss, in most cases, is in the range of optimum physical condition for plant growth. We conclude that the developed physical-property-triangle can be suitable to suggest the optimum ratios of horticultural substrates used in this study.

A Study on the Butt Welding of Zircaloyf Sheets Using Nd:YAG Laser (Nd-YAG 레이저를 이용한 Zircaloy-4 판재의 맞대기 용접에 관한 연구)

  • 황용화;고진현
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.139-143
    • /
    • 2000
  • Laser beam weldability of Zircaloy-4 was investigated using a pulsed Nd:YAG laser of 550W average power. Mechanical properties and microstructure of laser butt welded Zircaloy-4 test specimens were examined. The influence of laser generated during laser welding was analyzed and optimum laser welding parameters were investigated.

  • PDF

Study for Optimum Use of Forest Biomass Generated from the National Forest Management Operation (Part 2) - Fitness of Mixed Wood Species as Raw Materials for Kraft Pulp - (숲가꾸기 산물의 최적용도 개발을 위한 연구 (제2보) - 산물의 혼합을 통한 크라프트 펄프화 적성 연구 -)

  • Lee, Jee-Young;Kim, Chul-Hwan;Park, Hyun-Jin;Kim, Sung-Ho;Kim, Gyung-Chul;Sheikh, M.I.;Cho, Hu-Seung;Shim, Sung-Woong;Lee, Young-Min;Ahn, Byung-Il
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This study was carried out to explore optimum use of the products generated from the National Forest Management Operation (NFMO) as raw materials for kraft pulp. First of all, different wood species from NFMO were randomly mixed, and then they were used to make kraft pulp under the specified condition. All kraft pulps made from the mixed species displayed equal physical properties to those from foreign wood chips used in Moorim P&P Co. Ltd. For optical properties, most of the unbleached pulps had high brightness but the pulp made from wood species containing chestnut tree showed the lowest brightness due to its high kappa number. Finally, the products from NFMO had little negative effects on the properties of kraft pulps. This means that they could be used as complementary raw materials for kraft pulps with foreign wood chips.

A Study on Crack Reduction of Covering Concrete with Fibers in Basement (섬유를 혼입한 지하층 누름콘크리트의 균열저감을 위한 연구)

  • Kim, Dae-Geon;Park, Hyun-Jung;Lee, Dong-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.814-821
    • /
    • 2015
  • The purpose of this study is to estimate crack reduction properties of covering concrete with fibers in basement. Air contents, slump, compressive strength, tensile strength and plastic shrinkage has been tested to conduct the optimum addition ratio and type of fiber. The results is a following. For the properties of air contents, all of the specimens added fibers shown the higher than plain concrete. For the flowability, slump decreased about 40-80% when all of the specimens added fibers. For the strength properties, the specimens added nylon fiber shown higher compressive and tensile strength about 5-15% comparing with other concrete. For the plastic shrinkage, cracking decreased when the fiber added comparing with plain concrete. Especially, when nylon fiber added in the concrete, the plastic shrinkage did not occurred. For the overall consideration, when the addition ratio of nylon fiber is 0.6%, the press concrete is identified as showed optimum properties.

The Effect of Thermal Storage/Release and Moisture Transport Properties of Polyethylene Glycol-Treated Acrylic Athletic Socks on the Wear Performance (Polyethylene Glycol 처리한 아크릴 운동용 양말의 축열 . 방열성과 수분전달 특성이 착용 성능에 미치는 영향)

  • 조길수;이은주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.1
    • /
    • pp.36-50
    • /
    • 1995
  • The purpose of this study was 1) to estimate the improvement of thermal storage/release and moisture transport properties of PEG-treated acrylic athletic socks and suggest the optimum add-on for PEG treatment, 2) to investigate wear performance of untreated cocks and two kinds of socks treated with PEG of minimum and optimum add-on respectively, and 3) to consider the effect of thermal storage/release and moisture transport properties of PEG- treated socks on the wear performance and the subjective comfort zone. Thermal activities of specimens treated by PDC were evaluated on a DSC by measuring the heat of fusion on heating and the heat of crystallization on cooling. Moisture regain, absorption speed, wickability, water retenti on value, and water-vapor permeability were measured. In the wear trials that the subjects performed a subsequent exercise protocol wearing three differently treated socks in a conditioned environment ($14\pm2^{\circ}C$, 65$\pm$2% R.H.), microclimate temperature and humidity, and subjective wear sensations including thermal sensation, wettedness, softness, fit, and overall comfort were obtained. PEC-treated specimens with more than 20% add-on showed thermal storage on heating and thermal release on cooling by a DSC and the heat contents of treated ones were generally proportional to the add-ons. Moisture transport properties were highly improved after PEG treatment and increased rapidly with increasing add-on. The tendencies were, however, relaxed above 50% add-on and the treated knits were much stiffer above that add-on. In the wear trials of untreated, PEG add-on 20%, and 50% acrylic socks, the changes of microclimate temperature of 50% socks were significantly less than that of 20% socks. PEG add-on 50% socks showed significantly less changes of microclimate humidity than other two kinds of socks. Three kinds of socks showed significant differences in overall comfort and add-on 50% socks were accepted more comfortable than other two kinds of socks. Comfort zone of foot was extended after PEG treatment on socks and it implied that the subjects wearing PEG- treated socks felt comfortable in wider ranges of microclimate temperature and humidity.

  • PDF