• Title/Summary/Keyword: optimum pH

Search Result 4,188, Processing Time 0.029 seconds

Studies on the Celluloytic Enzymes Produced by Stropharia rugosoannulata in Synthetic Medium (합성배지에서 Stropharia rugosoannulata가 생산하는 섬유소분해효소에 관한 연구)

  • Yoo, Kwan-Hee;Chang, Hyung-Soo
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.94-99
    • /
    • 1999
  • For the purpose of utilizing cellulose resources by cellulolytic enzymes of Stropharia rugosoannulata, it's cultural conditions for the prodution of cellulolytic enzymes in synthetic media were investigated. The optimum pH for the production of Avicelase and ${\beta}-glucosidase$ was pH 5.0, while that of CMCase was pH 4.0. The optimum temperature for the production of Avicelase, CMCase and ${\beta}-glucosidase$ was $40^{\circ}C$. Among the carbon sources, xylose was good for the production of CMCase and ${\beta}-glucosidase$, but maltose was good for the production of Avicelase. The optimum concentration of the carbon sources for the production of CMCase, Avicelase and ${\beta}-glucosidase$ was 1.0, 0.8 and 1.1%, respectively. As inorganic nitrogen sources, $NH_4Cl$ was good for the production of all the three cellulolytic enzymes. The optimum concentration of $NH_4Cl$ for the production of CMCase was 0.3% while that of Avicelase and ${\beta}-glucosidase$ was 0.4%. As organic nitrogen sources, malt extract was good for the production of all the three cellulolytic enzymes. The optimum concentration of organic nitrogen for the production of ${\beta}-glucosidase$ was 1.3% while that of CMCase and Avicelase was 1.0%. As the mineral sources, $CoCl_2$ good for the was good for the production of all the three cellulolytic enzymes. The optimum concentration of $CoCl_2$ for the production of all the three enzymes was 0.35%.

  • PDF

Optimum Stragies for Unfavorable Situation in Red & Black

  • Ahn, Chul H;Sok, Yong-U
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.683-691
    • /
    • 2002
  • In a game called red and black, you can stake any amount s in your possession. Suppose your goal is 1 and your current fortune is f, with 0 < f < 1. You win back your stake and as much more with probability p and lose your stake with probability, q = 1- p. Ahn(2000) considered optimum strategy for this game with the value of p less than $\frac{1}{2}$ where the house has the advantage over the player. The optimum strategy at any f when p < $\frac{1}{2}$ is to play boldly, which is to bet as much as you can. In this paper we perform the simulation study to show that the Bold strategy is optimum.

Formulation of Surimi and Surimi-based Products with Acceptable Gelling Ability from Squid Muscle (가열 젤 형성능을 가진 오징어 Surimi와 Surimi-based 제품을 위한 첨가물의 최적화)

  • Kim, Byeong-Gyun;Choi, Yeung-Joon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • We investigated the optimum formulation to improve the gelling ability of squid, Dosidicus gigas, surimi. The solubility of minced squid muscle was highest at pH 10.7, and lowest at pH 5.0. The yields of conventional surimi and protein recovery after alkaline pH-shift processing were $68.1{\pm}2.4%$ and $65.3{\pm}2.6%$, respectively, whereas the protein recovery with acidic pH-shift processing was only $21.2{\pm}1.6%$. The addition of 5% starch decreased the breaking force regardless of the kind of starch, while the mixture of corn, potato, and wheat starch (total 15%) increased the breaking force by up to 1.9 fold. The addition of 5% egg white, 5% porcine plasma protein, 0.3% $CaCl_2$, and 0.3% Polymix GA significantly increased the breakingforce (P<0.05). None of the ingredients examined in this study significantly affected the deformation value (P<0.05). The optimum concentrations of egg white and $CaCl_2$ to obtain a breaking force of 55 g and a whiteness of 70 were 2.69% and 0.22%, respectively.

Separation of Fission Products by Ion Exchange Method (이온 교환법(交換法)에 의한 핵분열생성물(核分裂生成物)의 분리(分離))

  • Lee, Byung-Hun;Bang, Je-Geon
    • Journal of Radiation Protection and Research
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 1983
  • The sequential separation of Ru-103, Cs-137 and Ce-144 was carried out by organic cation exchanger, Amberite CG-120, and inorganic ion exchangers, silica gel and montmorillonite. The optimum conditions of Ru-103, Cs-137 and Ce-144 on Amberite CG-120 are 0.01M-, 0.01M- and 0.1IM- hydrochloric acid for the adsorption, and 3M-, 3M- and 5M-hydrochloric acid for the desorption, respectively. The optimum conditions of Ru-103, Cs-137 and Ce-144 on silica gel are pH 8, pH 8 and pH 8 for the adsorption. and 3M-, 1M- and 1M-hydrochloric acid for the desorption. respectively. The optimum conditions of Ru-103, Cs-137 and Ce-144 on montmorillonite are pH 8, 0.01M-hydrochloric acid and pH 4 for the adsorption, and 1M-, 5M- and 3M-hydrochloric acid for the desorption. respectively. The adsorption which occurs at lower ionic strength and the differences in desorption ionic strength are utilized for the separation of tracer mixture in continuous experiments. The individual separation of Ru-103, Cs-137 and Ce-144 can be carried out more efficiently with montmorillonite than with silica gel and Amberite CG-120.

  • PDF

Studies on the Extraction of Seaweed Proteins Extraction of Water Soluble Proteins in Unexploited Seaweeds (해조단백질(海藻蛋白質) 추출(抽出)에 관(關)한 연구(硏究) -5. 적이용(赤利用) 해조(海藻)의 수용성(水溶性) 단백질(蛋白質) 추출조건(抽出條件)-)

  • Jeon, Yong-Hee;Lee, Kang-Ho;Ryu, Hong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.9 no.1
    • /
    • pp.15-22
    • /
    • 1980
  • In this study, two species of algae, Ecklonia stolonifera, Sargassum thunbergii and one species of marine plant, Zostera marina(rhizoid and stem) were collected and extamined to determine the extractability of water soluble protein and the influences of various factors including extraction time, temperature, ratio of sample vs solvent and pH upon the extractability were tested. The effects of precipitation treatments for isolation of algal protein from the extracts(TCA treatment, methanol treatment and pH control) were also tested. Amino nitrogen and total nitrogen of purified samples made by obtained optimum conditions were estimated. The effect of the ratio of sample vs solvent on extractability differed from species to species which was enhances at 1:100(w/v) in Sargassum thunbergii and Zostera marina while 1:150(w/v) for Ecklonia stolonifera. The effect of extraction time and temperature was revealed differently in all species which might be considered to be caused by differences in the constitution of algal tissues. But in case of TCA insoluble nitrogen, it was showed the maximum extractability at $40-50^{\circ}C$ for 1 hour extraction. The optimum pH for the ext action of total nitrogen was 9-12 while the optimum pH was 6-7 for TCA insoluble nitrogen. And the pH control appeared to be most effective in the influence of precipitation treatment for isolation of algal protein.

  • PDF

Analysis of the Changes in Metabolic Diversity of Microbial Community in pH-gradient Microcosm

  • Ahn, Young-Beom;Cho, Hong-Bum;Park, Yong-Keel
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • The Biolog redox technology was carried out for evaluation of acidification effect on microbial communities at each stage of pH gradient microcosm. While the number of heterotrophic bacterial population and activities of extracellular enzyme decreased as the pH decreased, the number of total bacteria in the microcosm was not affected. The average color development of sample at each pH-gradient showed a sigmoidal curve, and at higher pH, more overall color development appeared in Biolog plates. Average color development value in Biolog plates was stabilized at 50 hours as an optimum incubation time. The color production in the Biolog plates was caused by cell density at above pH 5.0, but by cell activity below pH 4.0. Principal component analysis of color responses revealed distinctive patterns among the pH-gradient microcosm samples.

  • PDF

Effect of External Factors on Diastase Activity in Water (각종 요인이 물속의 Diastase 활성에 미치는 영향)

  • Yoon, Bock-Sang;Hyun, Ho-Sup;Paik, Nam-Won
    • Journal of Preventive Medicine and Public Health
    • /
    • v.7 no.1
    • /
    • pp.107-113
    • /
    • 1974
  • Many factors exert an influence on enzyme activity and thus on the rate of reactions that they catalyse. The most important of these factors are pH, temperature, substrate concentration, and the concentration of some inhibitors present. A solution of the enzyme diastase, which breaks down molecules of the polysaccharide starch to the disaccharide maltose by hydrolysis, was provided. Activity of this enzyme was measured by the rate at which starch was removed from the reaction mixture. These experiments were designed to study this reaction rate under varying conditions and the following results were obtained. 1. The range of optimum pH for this enzyme at room temperature was 4.0-7.0 and the optimum pH was 5.0. 2. The range of optimum temperatures for this enzyme at pH 7.0 was $30^{\circ}C-50^{\circ}C$ and the optimum temperature was $40^{\circ}C$. 3. The relationship between the enzyme activity and substrate concentration could be expressed by the Michaelis-Menten equation. The limiting velocity of this enzyme at room temperature and pH 7.0 was $415{\mu}g$ starch removed/ml of reaction mixture/min and $K_m$, Michaelis constant, was $343{\mu}g/ml$. 4. Inhibitors NaCl and $HgCl_2$ blocked this enzyme activity completely at 1% and 0.01% respectively.

  • PDF

Inactivation of Ralstonia Solanacearum Using Aquatic Plasma Process (수중 Plasma 공정을 이용한 Ralstonia Solanacearum 불활성화)

  • Back, Sang-Eun;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.797-804
    • /
    • 2012
  • A dielectric barrier discharge (DBD) plasma reactor was investigated for the inactivation of Ralstonia Solanacearum which causes bacterial wilt in aquiculture. The DBD plasma reactor of this study was divided into power supply unit, gas supply unit and plasma reactor. The plasma reactor consisted of a quartz dielectric tube, discharge electrode (inner) and ground electrode (outer). The experimental results showed that the optimum 1st voltage, 2nd voltage, air flow rate and pH were for 100 V (1st voltage), 15 kV (2nd voltage), 4 L/min, and pH 3, respectively. At a low 1st voltage, shoulder and tailing off phenomena was observed. The shoulder phenomenon was decreased as the increase of 1st voltage. R. Solanacearum disinfection in the lower air flow rate was showed shoulder and tailing off phenomenon because the active species generated less. Under optimum condition, shoulder and tailing off phenomenon was reduced. When the 2nd voltage was less than 7.5 kV, tailing off phenomenon was observed and this was not vanishes even though the increase of the disinfection time. The inactivation efficiency increased as the increase of air flow rate, however, the efficiency decreased when the air flow rate was above 4 L/min. R. Solanacearum disinfection at pH 3 showed somewhat higher than in pH 11. The pH effect of R. Solanacearum deactivation is less than the impact on other factor.

Biochemical Properties of Eggplant Fruit Lectin. (가지 열매 lectin의 생화학적 성질)

  • Roh, Kwang-Soo
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.350-356
    • /
    • 2008
  • Biochemical characterization including hemagglutination of erythrocytes, molecular weight, optimum temperature, thermal stability, optimum pH, carbohydrate specificity, and inhibitory effect of metal ion were studied in lectin of eggplant (Solanum melongena L.) fruit prepared by ammonium sulfate fractionation and affinity chromatography. This lectin was agglutinated by trypsin-treated rat blood erythrocyte. The molecular weight of this lectin by SDS-PAGE was estimated to be approximately 19.3 kDa of a single band. This lectin has no activity by 7 carbohydrates containing D-glucose. The optimum range of temperature and pH were $10-20^{\circ}C$ and pH 6.2-7.2, respectively. This lectin was relatively stable at $20-70^{\circ}C$. And the activity of this lectin was not inhibited by $Ca^{2+},\;Co^{2+},\;Cu^{2+},\;Fe^{2+},\;Mg^{2+}$, and $Mn^{2+}$.

Effect of pH and Temperature on the Electrochemical Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase (일산화탄소탈수소화효소를 이용한 이산화탄소의 전기화학적 환원에 미치는 pH와 온도의 영향)

  • Shin, Jun-Won;Kim, You-Sung;Lee, Sang-Hee;Lee, Sang-Phil;Lee, Ho-Jun;Lim, Mi-Ran;Song, Ji-Eun;Shin, Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.265-269
    • /
    • 2007
  • The effects of experimental variables for the electrochemical reduction of carbon dioxide by Carbon Monoxide Dehydrogenase (CODH) were investigated. It shows the pH optimum at 6.3 where the feasibility of electro-chemical reduction and the stability of CODH compromise each other. The optimum temperature for the reduction was at $60^{\circ}C$ where the enzyme shows the optimum activity although the solubility of carbon dioxide decreases as increasing temperature.