• Title/Summary/Keyword: optimum mixture ratio

Search Result 346, Processing Time 0.03 seconds

Bifidobacterium Fermentation of Rice and Apple Pomace Mixture (쌀과 사과박 혼합물을 이용한 Bifidobacterium발효제품의 개발)

  • 이주연;박종현;장학길;목철균
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.333-338
    • /
    • 1999
  • This study was aimed to develop a value-added fermented products from rice and apple pomace using Bifidobacterium fermentation. The Bifidobacterium fermentation system of the mixture of rice and apple pomace was developed, and the physicochemical properties of the products were investigated. After 4 different bifidobacteria were compared for their fermentation capability and sensory properties of the fermented product, Bifidobacterium FBD-13 and FBD-22 were selected as appropriate strains for the fermentation of saccharified rice solution(SRS). The optimum inoculation level was 2% and the optimum fermentation time was 42 hrs. When wet apple pomace(WAP) was added to SRS, it contributed to the improvement of sensory properties of the fermented products and the optimum mixing ratio was 40% WAP and 60% SRS in weight. For the fermentation of the mixture of WAP and SRS, Bifidobacterium FBD-27 and FBD-22 were selected as suitable strains.

  • PDF

Measurements of Equivalence Ratio in the Spark Plug Gap and Its-Effects on Combustion Under Stratified Mixture Conditions in a Constant Volume Chamber (정적 연소실에서 성층화된 혼합기 조건하의 점화 전극사이 당량비 측정과 연소 특성에 미치는 영향)

  • Bae, Sang-Su;Lee, Gi-Cheol;Min, Gyeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1311-1317
    • /
    • 2001
  • To investigate only the effects of the stratified mixture distribution on initial flame propagation and combustion characteristics, the instantaneous equivalence ratio in the spark plug gap and combustion pressure were measured simultaneously In a constant volume chamber, To induce the stratified propane-air mixture distribution near the spark plug, counter-flow typed mixture injection system was used under the constant mean equivalence ratio $\Phi$$\_$mean/= 1.0 The instantaneous equivalence ratio was measured by a single-shot Raman scattering with narrow-band KrF excimer laser. The measuring error was within the limit of $\pm$ 3.5% provided that the proposed method was applied to the measured Raman signals. Judging from mass fraction burned derived from the measured pressure, the optimum combustion characteristics were shown under the condition that the local equivalence ratio in the spark plug was near 1.28$\pm$0.04, and these characteristics were more remarkable at the initial stage of combustion.

Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling (볼밀링에서 볼 배합비 선택을 위한 혼합물 실험계획 및 분석)

  • Kim, Seong-Jun;Choi, Jai Young;Shin, Hyunho
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.579-590
    • /
    • 2014
  • Purpose: Ball milling is a popular process for obtaining fine powders in the part and material industry. One of important issues in the ball milling is to produce particles with a uniform size. Although many factors affect uniformity of particles, this paper focuses on the choice of ball diameter. Consider a ball milling where balls can be taken with three different diameters. The purpose of this paper is to find a ball mix which minimizes the average particle size. Methods: Ball diameters are selected as 10mm, 3mm, and 0.5mm. In order to find an optimum mixing ratio, the method of mixture experiments is employed in this paper. Taguchi's signal-to-noise ratio (SNR) for smaller-the-better type is also used to analyze experimental data. Results: According to the experimental result, SNR is maximized when the ball mix is taken as either 7:3:0 or 6:4:0. Such mixing ratios can be technically validated in terms of porosity reduction. Conclusion: The ball mixing technique presented in this paper provides a useful way to improve the production efficiency with a low cost.

Determination of Mixing Ratio of Mixed Refrigerants and Performance Analysis of Natural Gas Liquefaction Processes (혼합냉매 혼합비에 따른 천연가스 액화공정 성능 비교)

  • Kim, Min Jin;Yi, Gyeong Beom;Liu, Jay
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.677-684
    • /
    • 2013
  • A mixed refrigerant cycle (MRC) has been widely used in liquefaction of natural gas because it is simple and easily operable with reasonable equipment costs. One of the important techniques in MRC is selection of a refrigerant mixture and decision of its optimum mixing ratio. In this work, it is examined whether mixture components (refrigerants) and their mixing ratio influence performance of general MRC processes. In doing this, mixture design and response surface method, which are well-known statistical techniques, are used to find optimal mixture refrigerants and their optimal mixing ratio that minimize total energy consumption of the entire liquefaction process. A MRC process using several refrigerants and various mixing ratios is simulated by Aspen HYSYS and mixture design and response surface method are implemented using Minitab. According to the results, methane ($C_1$), ethane ($C_2$), propane ($C_3$) and nitrogen ($N_2$) are selected as best mixture refrigerants and the determined mixture ratio (mole ration) can reduce total energy consumption by up to 50%.

The Study on Properties of Mortar with Copper Smelting Slag (동제련 슬래그를 혼입한 모르타르의 강도 특성 연구)

  • Park, Cho-Bum;Ji, Suk-Won;Seo, Chee-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.263-268
    • /
    • 2000
  • Recently, the recycling of the by-products was attempted to various fields. One of the major industry, the copper manufacturing industry produced a lot slags. in this study, the copper smelting slag was used to use practically application for the aggregate of concrete. To find the optimum mixing ratio of mortar with the copper smelting slag as substitution for sand, the mixing ratio was increased 1:2 to 1:5 step by step and every mixture was contained 5 steps sand substitutive ratio. The substitutive ratio of sand was increased 25% st대 by step from 0% to 100%. The result of this study was shown as follows. 1. In the every mixture, as the substitutive ratio was increased, the flow was decrease 3.64% from 18cm, and the unit content weigth was increased 5.5% in average. 2. The property of the strength was judged that it was more affected W/C and mixing ratio than the copper smelting slag.

  • PDF

Synthesis of $TiB_2-Al_2O_3$ Composite by Self-Propagating High Temperature Synthesis (SHS) and Its Pressureless Sintering (SHS법에 의한 $TiB_2-Al_2O_3$계 복합물의 합성 및 상압소결에 관한 연구)

  • 최상욱;조동수;김세용;남건태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.552-560
    • /
    • 1994
  • A composite of TiB2-Al2O3 system was successfully prepared from a mixture of TiO2, B2O3, and Al by self-propagating high temperature synthesis (SHS) with a novel characteristic, utilizing the internal oxidation heat of aluminium metal of the mixture, instead of by a conventional technique, externally heating a mixture of Ti, B and Al2O3. From a mixture with B/Ti molar ratio of =2.0, pure two phases of TiB2 and $\alpha$-Al2O3 with good crystallinity and small, uniform sizes were formed. However, when the B/Ti molar ratio of the mixture goes to a value less than 2.0, in addition to the above main minerals, a small smounts of metastable phases such as TiB and Ti3B4 were formed. It was found that about 60%, the optimum green density of compacts gave their highest reaction rate and temperature during SHS process. TiB2-Al2O3 system composite with B/Ti molar ratio of =2.0 could be pressurelessly sintered even at 190$0^{\circ}C$ under Ar gas flows without any addition of sintering aids, showing their good properties such as 91.2% in relative density, 2750 kgf/$\textrm{mm}^2$ in Vickers hardness and 2620 kgf/$\textrm{cm}^2$ in flexural strength.

  • PDF

Quality Characteristics of Pan Bread with Added Salt and Fat Content after Microwave Irradiation (Microwave 조사 시 소금 및 유지의 첨가량이 식빵의 품질 특성에 미치는 영향)

  • Park, Sang-Jun;An, Hye-Lyung;Lee, Kwang-Suck
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.5
    • /
    • pp.687-696
    • /
    • 2010
  • This study focused on microwave irradiation of dough, raising its temperature to monitor potential variations of dough properties and bread quality, and examined the optimum mixture ratio towards streamlining the bread-making process. According to comparison and analysis on dough properties and bread quality depending on mixture materials, it was found that Salt 2 had the highest dough temperature of all, and Salt 1 had the highest fermentation rate and specific volume but the lowest hardness (i.e. highest softness). Results of sensory evaluation, were that Salt 1.5 scored highest points in sweet taste, aftertaste, and overall acceptance, but there were significant differences among bread samples. Likewise, it was found that Fat 6 had the highest dough temperature, fermentation rate and specific volume of all. Texture analysis, showed that Fat 0 had the highest hardness of all. According to sensory characteristics, Fat 3 scored the highest points in overall acceptance. Based on these results, the optimum mixture ratio of salt and fat for microwave-irradiated bread was found to be 1.5% salt and 3% fat.

Analysis of Optimal Mixture Ratio for Extrudate of the Soymilk Residue and Corn Grits by Mixture Design (혼합물 실험 계획법에 의한 두유박과 옥분 압출성형물의 최적 혼합비 분석)

  • Han, Gyu-Hong;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.617-622
    • /
    • 2003
  • Experimental designs were applied to optimize the mixture ratio for the extrudate made by soymilk residue and corn grits. Nine candidate points were examined for their significance on extrudate using the modified distance design. Bending force, expansion ratio, bulk density, water solubility index (WSI), water absorption index (WAI) and color $(L^*,\;a^*,\;b^*)$ were the significant factors improving the extruded cereal production, and these values were applied to the mathematical models. Results showed that bending force, expansion ratio WSI, WAI and color $(L^*,\;b^*)$ increased with increasing the corn grits, whereas bulk density tended to decrease. The statistical study showed that the fitted models were adequate to describe the contour plot and all responses. Optimum mixture ratio allowing to maximize the two responses (expansion ratio and $b^*$) and minimize the response (WAI) were examined with a numerical optimization methods. The numerical optimization method was obtained as 53.18% : 46.19% (corn grits : soymilk residue).

A Study on the Fermentation Characteristics of Garbages by the C/N Ratio Control using Kudzu Creeper and Sawdust (칡넝쿨 및 톱밥을 이용한 C/N비 조절에 따른 음식물찌꺼기의 발효특성에 관한 연구)

  • Park, Jin Sik;An, Cheol U;Mun, Chu Yeon
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.23-23
    • /
    • 2000
  • In this study, to determine the optimum fermentation process for the feed production of food wastes and estimate the practical value of fermented feed using kudzu creeper and sawdust as bulking agent. This study considered initial C/N ratio control as the fermentation process variables. The results are summarized as follows. Minimum water contents of byproducts in the fermentation feed production showed 3994(kudzu), 37%( sawdust) at the C/N ratio 25 and 45%(kudzu, sawdust) at the C/N ratio 35. Temperature variations in the fermentation feed production at the C/n ratio 25 indicated 68'C(kudzu), 70'C (sawdust).Optimum condition of consists of fermentation process of water content, C/N ratio and permeability (porous structure of the mixture). For optimum fermentation of gravitationally, dewatered garbage, the proper mixing ratios of kudzu(moisture contents : 17.3%) and sawdust(moisture contents : 13.2%) were 41% and 39%, respectively Major biological reaction in the aerobic fermentation feed production occurred during 12~14hrs

Manufacture of Conductive Complex Board Using Nano-Carbon Black and Paper Sludge (나노카본블랙과 제지 슬러지를 이용한 전도성 복합보드의 제조에 대한 연구)

  • Kim, Yong-Ryul;Son, Min-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.363-369
    • /
    • 2008
  • In the present work, the choice of the nano carbon black and optimum mixed ratio and effectiveness of the mixed carbon black to get a raw data for a manufacturing method of conductive complex board. Optimum mixed ratio of paper sludge & water was 1 : 2.5 for reformations. HB-41-Y was cheaper than Super-P with the single carbon black. Also electric conductivity of HB-41-Y($6.406{\times}10^{-2}\;{\Omega}cm^{-1}$) was about 6.5 times higher than Super-P($9.741{\times}10^{-3}\;{\Omega}cm^{-1}$) at 20 wt% carbon black. This time optimum mixture ratio of the paper sludge and the carbon black to be about 15 wt%, optimum mixed ratio HB-41Y and Graphite about 3:1 and its electric conductivity was $5.824{\times}10^{-2}\;{\Omega}cm^{-1}$.