• 제목/요약/키워드: optimum mixture

검색결과 868건 처리시간 0.022초

Barium-Ferrite 조직구조(組織構造)에 관(關)한 연구(硏究) (제2보(第二報)) (Studies on Microstructure of Barium Ferrite. <2nd. Report>)

  • 안영필;오평제;김동수;도명기
    • Applied Microscopy
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 1972
  • The Optimum Conditions of Preparing barium Ferrite from $BaCO_3$ and $Fe_2O_3$ are Sought for with electron microscope. At first to find the optimum sintering temperature, the mixture in 1 : 3 mole ratio. Sintered primarily at $700^{\circ}C$ for an hour, is Sintered secondary at $960^{\circ}C{\pm}10,\;1040^{\circ}C{\pm}10,\;1120^{\circ}C{\pm}10,\;1200^{\circ}C{\pm}10,\;1250^{\circ}C{\pm}10,\;1330^{\circ}C{\pm}10$, respectively for an hour. at the optimum temperature,abtained in this way. Sintering time is varied from 10 minutes to 120 minutes with 10 minutes intervals. Through the experiment, It is found that the optimum temperature of $1200{\sim}1250^{\circ}C$ and optimum time of half-one hour.

  • PDF

Electrical breakdown properties in neon gas mixed with xenon

  • Han S. Uhm;Park, Eun H.;Guansup Cho;Ki W. Whang
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제4권4호
    • /
    • pp.112-121
    • /
    • 2000
  • The paper investigates electrical discharge properties in neon gas mixed with xenon. The breakdown temperature T$\sub$b/ and voltage V$\sub$b/ are obtained in terms of the gas mixture ratio X. It is shown that the breakdown voltage decreases, reaches the minimum value at X=0.02 and then increases again, as the mixture ratio X increases from zero to unity. Therefore, mixing the neon gas with a few percent of xenon is the most beneficial to reduce the breakdown voltage. Plasma density at breakdown in neon gas mixed with xenon is described in terms of the gas mixture ratio. The optimum value of mixture ratio for highest plasma density is found to be Xm=0.03. A preliminary experiment of AC-PDP is carried out for neon gas mixed with a few percent of xenon to verify some of the theoretical models. The experimental data agree qualitatively well with theoretical predictions.

  • PDF

Optimum Condition for Xe Gas Excitation in Plasma Display Panels through Ternary Gas of He, Ne, Xe

  • Khorami, Alireza;Ghanbari, Shirin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.744-747
    • /
    • 2009
  • Plasma Display Panels (PDPs) have illustrated impressive results in terms of light emission efficiency of the Ne-Xe mixture compared with the He-Xe mixture. However, He-Xe has shown to achieve superior color purity. This paper presents the optimization of excitation efficiency and color purity for He-Ne-Xe ternary gas mixtures. Furthermore, we investigate the effect that a protective dielectric layer has on UV photon efficiency in a matrix known as electrode type PDP.

  • PDF

Evaluation of the Asph81t Mixture Performance with Waste Materials

  • Lee, Kwan-Ho;Lovell, C
    • 한국지반공학회지:지반
    • /
    • 제12권3호
    • /
    • pp.17-34
    • /
    • 1996
  • 본 논문의 주된 목적은 폐자원(첨가제로서 pyrolyzed carbon black과 굵을 골재로서 aircooled iron blast furnace slag)을 사용한 아스팔트 콘크리트의 기본특성을 설명하는 것이다. 최적의 아스팔트 함유량을 결정하기 위하여 Marshall Mik Design방법을 이용하였고, 최적의 아스팔트 함유량은 첨가제의 양에 따라 변하며,그 범위는 6.7%에서 7.57%로 나타났다. 최적의 아스팔트 함유량을 이용하여 아스팔트 콘크리트 시편을 제작하였고, dynamic creep 실험을 수행하였다. Pyrolyzed carbon black과 Furnace slag의 사용은 Marshall stability를 증가시켰고, 비교적 높은 온도(5$0^{\circ}C$)와 137.gkpa의 구속 압력하에서 아스팔트 콘크리트의 시간에 따른 변형률을 감소시켰고, 또한 시간에 따른 아스팔트 콘크리트의 stiffness감소 비율을 줄여주는 역할을 하였다. 본 실험결과로 부터 첨가제로서의 pyrolyzed carbon black과 굵은 골재로서의 slag의 사용은 Marshall stability, stiffness, rutting resistance에 좋은 결과를 나타내는 것으로 밝혀졌다.

  • PDF

LaNi5를 이용한 혼합기체로부터 수소의 선택적 분리 (Selective Separation of Hydrogen from Gas Mixture using LaNi5)

  • 선양국;남기석;이화영
    • 한국수소및신에너지학회논문집
    • /
    • 제1권1호
    • /
    • pp.15-23
    • /
    • 1989
  • The selective separation of hydrogen from gas mixture containing hydrogen was experimentally studied using $LaNi_5$. The capacity and the rate of hydrogen separation, the purity of recovered hydrogen and the optimum condition of the regeneration of deactivated $LaNi_5$ were investigated. The separation rate and the recovery ratio of hydrogen were slowly decreased with the increase of the number of hydrogen absorption cycle. It was found that this result comes from the deactivation of $LaNi_5$ partly because of the blocking of hydrocarbon compounds in the $LaNi_5$ lattice and partly because of the poisoning of $LaNi_5$ surface by carbon monoxide contained in the gas mixture. The optimum condition for the regeneration of deactivated $LaNi_5$ was obtained by heating in a vacuum to about 637 K. The recovery ratio of hydrogen at the optimum condition was observed to be about 80%. The rates of hydrogen separation were measured in the ${\alpha}$-phase and two phase regions. The rate equations could be expressed as follows ; ${\alpha}$ - phase : $$-\frac{dP{_{H_2}}}{dt}=9.836{\times}10^{-3}(P{_{H_2}}_{-P_{eq}})$$ two phase region : $$-\frac{dP_{H{_2}}}{dt}=1.6909{\times}10^2\exp(-17560/RT)(P{_{H_2}}_{-P_{eq}})$$.

  • PDF

양모.폴리에스터 혼방직물의 효소가공 시 활성제 복합사용의 효과 (Effects of Mixed Activators on Enzymatic Activation for Wool.polyester Blend Fabrics)

  • 송현주;송화순
    • 한국의류학회지
    • /
    • 제32권9호
    • /
    • pp.1461-1466
    • /
    • 2008
  • This study provides effects of mixed activators on enzymatic activation and determines optimum mixture ratio for enzymatic treatment. Wool 80% and polyester 20% blend fabric and papain from carica papaya are used in this experiment. L-cysteine and sodium sulfite are used as activators for papain treatment process. The treatment condition is pH 7.5, $70^{\circ}$, papain concentration 10%(o.w.f), 60 minutes. L-cysteine and sodium sulfite are added in enzyme solution with various concentrations($0{\sim}50mM$). The optimum treatment condition is determined by measuring weight loss, tensile strength, whiteness, water contact angle(WCA), dyeability and surface micrographs. The results are as follow; The optimum mixture ratio of activators is L-cysteine 2mM and sodium sulfite 10mM. Mixed activators assists in improving the activation of papain. WCA of papain treated fabrics is decreased since papain treatment with activator mixture makes wool polyester blend fabrics more hydrophilic. Dyeing property of papain-treated fabrics more improves by the treatment with mixed activators than with single activator. It means that this method can save time and lower cost. After papain treatment in the presence of mixed activator, the surface of fabrics is modified. The surface of wool fiber shows to be descaled and hydrolyzed, and that of polyester fiber shows to be cracked.