• Title/Summary/Keyword: optimum length

Search Result 1,487, Processing Time 0.027 seconds

Louvered Fin Heat Exchanger : Optimal Design and Numerical Investigation of Heat and Flow Characteristics (루버휜 최적 설계 및 최적 모델의 열유동 특성 분석)

  • Ryu, Kijung;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.654-659
    • /
    • 2013
  • This paper presents a numerical optimization of louvered fins to enhance the JF factor in terms of the design parameters, including the fin pitch, the number of louvers, the louver angle, the fin thickness, and the re-direction louver length. We carried out a parametric study to select the three most important parameters affecting the JF factor, which were the fin pitch, number of louvers, and the louver angle. We optimally designed the louvered fin by using 3rd-order full factorial design, the kriging method, and a micro genetic algorithm. Consequently, the JF factor of the optimum model increased by 16% compared to that of the base model. Moreover, the optimum model reduced the pressure drop by 17% with a comparable heat transfer rate.

Tenacity Characteristics of HPFRCC Depending on Various Fiber Replacing Ratio (섬유혼입률 변화에 따른 HPFRCC의 인성 특성)

  • Yun, jeong-Wan;Han, Dongyeop;Cha, Hun;Choi, Sang-Hwan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.69-70
    • /
    • 2015
  • This study has attempted to derived an optimum fiber replacing ratio for practical use by measuring tensile strength and length deformation followed by variation of fiber replacing ratio among the basic characteristics of HPFRCC in order to evaluate the possibility of practical use of HPFRCC. As a result of performing experiment and research, the optimum replacement ratio was determined at the fiber replacing ratio of 1.5% when compressive strength, tensile strength and tensile stress-strain curve.

  • PDF

Optimum static balancing of a robot manipulator using TLBO algorithm

  • Rao, R. Venkata;Waghmare, Gajanan
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.13-31
    • /
    • 2018
  • This paper presents the performance of Teaching-Learning-Based Optimization (TLBO) algorithm for optimum static balancing of a robot manipulator. Static balancing of robot manipulator is an important aspect of the overall robot performance and the most demanding process in any robot system to match the need for the production requirements. The average force on the gripper in the working area is considered as an objective function. Length of the links, angle between them and stiffness of springs are considered as the design variables. Three robot manipulator configurations are optimized. The results show the better or competitive performance of the TLBO algorithm over the other optimization algorithms considered by the previous researchers.

Optimum Design of a Reversed Trapezoidal Fin with Variable Fin Base Thickness (핀 바닥 두께가 변화하는 역 사다리꼴 핀의 최적 설계)

  • Kang, Hyung-Suk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.455-461
    • /
    • 2008
  • A reversed trapezoidal fin with variable fin base thickness is optimized using a two-dimensional analytical method. For the fin base boundary condition, instead of a constant temperature, heat transfer from the inside fluid to the fin base is considered. Heat loss from the fin tip is not ignored. The maximum heat loss, corresponding optimum fin effectiveness, fin length and base height are presented as a function of the fin base thickness, shape factor and volume.

Performance Evaluation of Batch Pulp Digester using By-product (Sheath) from Bamboo Laminate Production

  • Fatoki, Jimoh Gbenga
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.362-368
    • /
    • 2018
  • Purpose: Self-sufficiency in paper production is desired in Nigeria. This study was aimed at evaluating the performance of a locally fabricated batch pulp digester. Methods: The pulp yields of sheaths generated as waste in the production of bamboo (Bambusa vulgaris) laminates were determined at different liquor concentrations and treatment time after preliminary experiments to ascertain the conditions under which the sheath started to pulp. Moreover, the optimum pulping conditions and fiber characteristics were determined and estimated, respectively, to ascertain the pulp fiber suitability for paper production. Results: An optimum pulp yield of 65.1% was obtained at 50% NaOH and 25% $Na_2S$ liquor concentration (w/w) when the cooking time was 4 h. The results of fiber characterization of the pulp indicated an average fiber length of 2.19 mm with a low Runkel ratio of 1.63, both of which signify the suitability of the pulp for medium quality paper production. Conclusions: Softwood pulp can be blended with the fibers to improve the strength of the produced paper; further investigation should be carried out to use other non-woody plants for pulp and papermaking.

Impact of Tumor Length on Survival for Patients with Resected Esophageal Cancer

  • Mirinezhad, Seyed Kazem;Jangjoo, Amir Ghasemi;Seyednejad, Farshad;Naseri, Ali Reza;Mohammadzadeh, Mohammad;Nasiri, Behnam;Eftekharsadat, Amir Taher;Farhang, Sara;Somi, Mohammad Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.691-694
    • /
    • 2014
  • Background: Tumor length in patients with esophageal cancer (EC) has recently received great attention. However, its prognostic role for EC is controversial. The purpose of our study was to characterize the prognostic value of tumor length in EC patients and offer the optimum cut-off point of tumor length by reliable statistical methods. Materials and Methods: A retrospective analysis was conducted on 71 consecutive patients with EC who underwent surgery. ROC curve analysis was used to determine the optimal cut-off point for tumor length, measured with a handheld ruler after formalin fixation. Correlations between tumor length and other factors were surveyed, and overall survival (OS) rates were compared between the two groups. Potential prognostic factors were evaluated by univariate Kaplan-Meier survival analysis. A P value less than 0.05 was considered significant. Results: There were a total of 71 patients, with a male/female divide of 43/28 and a median age of 59. Characteristics were as follows: squamous/adenocarcinoma, 65/6; median tumor length, 4 (0.9-10); cut-off point for tumor length, 4cm. Univariate analysis prognostic factors were tumor length and modality of therapy. One, three and five year OS rates were 84, 43 and 43% for tumors with ${\leq}4cm$ length, whereas the rates were 75, 9 and 0% for tumors >4 cm. There was a significant association between tumor length and age, sex, weight loss, tumor site, histology, T and N scores, differentiation, stage, modality of therapy and longitudinal margin involvement. Conclusions: Future studies for modification of the EC staging system might consider tumor length too as it is an important prognostic factor. Further assessment with larger prospective datasets and practical methods (such as endoscopy) is needed to establish an optimal cut-off point for tumor length.

Micropropagation through Stem, Node-bud Shoot Tip and Bulblet Scale Culture in Fritillaria thunbergii Miq. (패모의 줄기, 마디, 정단 및 자구인편 배양에 의한 기내 증식)

  • Peak, Kee-Yoeup;Yu, Kwang-Jin;Seong, Nak-Sul;Choi, In-Sick;Cho, Jin-Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.2 no.2
    • /
    • pp.154-161
    • /
    • 1994
  • This experiment was carried out to establish micropropagation system in Fritillaria thunbergii Miq. Through the culture of bulblet scales, stems, node-buds and shoot tips with special reference to the effect of physiological age of explant and plant growth regulators on bulblet formation. Number of formed bulblets was significantly increased in node-bud or stem tissue compared to scals segments and on the medium supplemented with kinetin than BA containing medium. Optimum levels of kinetin for bulblet formation from node-bud taken from above 3 cm shoot length and stem segments excised from below 3 cm shoot length were 5.0 mg /L and $1.0{\sim}3.0\;mg$ /L kinetin, respectively. Interesting phenomenon was observed, the direct formation of bulblets from the axilliary bud of cultured explants. Bulblet forming capacity in stem tissue was depended on stem age, young stem had high regeneration ability compared to old stem taken from above 10 cm shoot length. 1.0 mg /L kinetin was optimum concentration for the formation of bulblets from old stem segments. Stem tissue taken from underground growing plant was promoted coampare to shoot tips or bulb scale segments. Optimum concentration of sucrose was $5{\sim}7%$. Summariged above results revealed that effective explant for micropropagation was stem and /or node-bud tissue excised from less than 3 cm plant height compared to those of bulb scale segments which showed high contamination after culture. Maximum multiplication rate of young stem and /or node-bud segment was about 20 times. Kinetin requirement for stimulation of bulblet formation from cultured explant depended on source of explants but favorable levels of kinetin for organogenesis ranged from 1.0 mg /L to 5.0 mg /L.

  • PDF

A Study on Optimal Reinforcing Type of Precast Retaining Wall Reinforced by Micropiles (마이크로파일로 보강된 프리캐스트 콘크리트 옹벽의 최적보강형태에 관한 연구)

  • Kim, Hong-Taek;Park, Jun-Yong;Yoo, Chan-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.89-99
    • /
    • 2006
  • The PCRW (Precast Concrete Retaining Wall) has many advantages compared with cast in place concrete retaining wall : shorter construction period, excellency of quality and minimum interference with the adjacent structure and traffics. However, shallow foundation type of PCRW, which has comparatively better ground condition, has some disadvantages such as difficulty in transportation and higher cost due to the size of PCRW being expanded by resisting only with self-weight if there is no other supplementary reinforcement. The presented study, in order to complement such disadvantages of PCRW, have applied the micropile method. The micropile method has advantages like low-cost and high-efficiency and does not require huge space, because it can be executed with small size equipment. However, the mechanical behavior characteristics of the PCRW reinforced by micropile, which is installed to improve the reinforcement effect, is not yet clearly identified and there is no suggested standard as to the length, diameter, install angle and install position of micropiles. Hence, this method is yet being designed depend on engineer's experience. In this study, various laboratory model tests as to sliding and overturning were performed in order to identify and present the optimum type of reinforcement and reinforcement effect of the PCRW reinforced by micropiles. In addition, it also executed numerical analysis for the purpose of verifying the optimum type of reinforcement for micropiles based on the results of laboratory model tests. The optimum reinforcement type of micropiles was estimated by model test and numerical analysis. The length of micropiles is 0.4 times wall height and the diameter is 0.04 times wall length.

Effect of the Exposed Length of Dwarf Rootstock M.9 on Growth and Yield of 'Seohong', 'Summer Dream' and 'Honggeum' Apples (사과 '서홍', '썸머드림', '홍금'의 생장 및 수량에 미치는 M.9 대목 노출길이의 영향)

  • Kwon, Young Soon;Kwon, Soon-Il;Kim, Jeong-Hee
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.168-172
    • /
    • 2016
  • The effect of different exposed length of M.9 rootstock on growth and yield was tested in the new apple cultivars. The 'Seohong', 'Summer Dream', and 'Hongguem' grafted on M.9 rootstock were planted in March 2010. The trees were planted in such a way that the exposed length of the rootstock to be 10, 20 and 30 cm. The result showed that as decreasing exposure length, TCA of 'Seohong', 'Summer Dream', and 'Hongguem' was increased between $3^{rd}$ and $6^{th}$ year after planting. The TCA of 20 cm and 30 cm exposure length showed respectively 70% and 60% in 'Seohong', 88% and 66% in 'Summer Dream', and 55% and 41% in 'Hongguem' of the TCA with 10 cm exposure length on 6-year-old trees. Tree height, canopy width, shoot length and terminal shoot length were also increased according to decreased exposure length in 6-year-old trees. The cumulative yield of three cultivars was higher in the tree with a lower exposure length between $4^{th}$ and $6^{th}$ year after planting. The cumulative yield of 20 cm and 30 cm exposure length showed respectively 77% and 63% in 'Seohong', 85% and 76% in 'Summer Dream', and 73% and 58% in 'Hongguem' of the cumulative yield with 10 cm exposure length in 6-year-old trees. Considering tree growth and yield, the optimum exposure length of M.9 was 10 cm for 'Seohong', 'Summer Dream' and 'Hongguem'.

The Use of Finite Element Method to Predict the Hot Shear-Welding Process of Two Aluminum Plates

  • Shang, Li-Dong;Lee, Kyeng-Kook;Jin, In-Tai
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.426-430
    • /
    • 2008
  • Hot shear-welding is a process of bonding two plates together by using shearing stress in a controlled manner. This study dealt with the hot shear-welding process of two aluminum plates. These two plates were piles up in the shear-welding mold. Due to the shearing stress, these two plates were cut off longitudinally, and meantime they were welded together. During this process the control of the surplus material flow is very important, and it can be realized by designing the overlapping length and the shape of the cavity. The commercial software Deform-3D was employed to predict the effect of these two factors. The overlapping length and the shape of the cavity that presents the optimum design was then developed to get a good shear-welding process.

  • PDF