• 제목/요약/키워드: optimum design

검색결과 5,666건 처리시간 0.04초

벌크화물용 포장용기의 최적 설계(II)-프로그램 개발 (Optimum Design of Packaging Container for Bulk Materials(II)-Computer Program Development)

  • 박종민;권순홍;정성원
    • 한국포장학회지
    • /
    • 제6권1호
    • /
    • pp.12-18
    • /
    • 2000
  • If optimum design technique is applied in the design of packaging container for bulk materials, merits on the side of not only economic and compression performance but distribution efficiency are expected. In this study, on the ground of the optimum models for required board area and compression strength performance, optimum design program having faculties of outward and inward optimum design and information design was developed. This program was composed of input module, output module, database and management module, and calculation module. Though the packaging specifications ars same, requied board area, board composition and cost of container were greatly different according to exterior packaging conditions. Also, about 12% in weight of container was lighter, and about $13{\sim}17%$ in cost of container was reduced when the program was applied for 2 kinds of bulk materials.

  • PDF

강상판교의 생애주기비용 최적설계 (Optimum Life-cycle Cost Design of Orthotropic Steel Deck Bridges)

  • 조효남;민대홍;이광민
    • 한국강구조학회 논문집
    • /
    • 제13권4호
    • /
    • pp.337-349
    • /
    • 2001
  • 교량은 계속적으로 변하는 하중 환경에 의해서 다른 구조물에 비해 비교적 빨리 노후화 되기 때문에 초기비용 이외에도 교량의 유지관리, 교통의 원활한 소통 또는 적체 등에 따른 비용, 교량의 손상에 따른 보수보강 및 교량의 해체 재건설 등 추가적인 비용의 영향이 크므로 공용간 생애주기 비용(LCC)을 설계단계에서부터 체계적이고 합리적으로 고려되어야 한다. 이에 본 연구에서는 강상판교의 설계에 있어서 주형의 휨 전단, 사용성, 피로에 대한 보강기대비용 등을 포함하는 LCC에 근거한 비용함수모형을 이용하여 이를 최적설계에 적용하고 기존의 설계방법과 비교 분석하였다. 적용예제의 결과에 나타난 바와 같이 LCC를 고려한 강상판 교량의 최적설계는 더욱 합리적이고, 경제적이며, 안전한 설계를 유동할 수 있으리라 판단된다.

  • PDF

An efficient method for reliable optimum design of trusses

  • Dizangian, Babak;Ghasemi, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1069-1084
    • /
    • 2016
  • This paper introduces a new and effective design amplification factor-based approach for reliable optimum design of trusses. This paper may be categorized as in the family of decoupled methods that aiming for a reliable optimum design based on a Design Amplification Factor (DAF). To reduce the computational expenses of reliability analysis, an improved version of Response Surface Method (RSM) was used. Having applied this approach to two planar and one spatial truss problems, it exhibited a satisfactory performance.

농업용 수로터널의 최적 설계(구조 및 재료 \circled1) (Optimum Design of Agricultural Aqueduct Tunnel)

  • 김종옥
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.206-212
    • /
    • 2000
  • In this study, computer program for the optimum design of agricultural aqueduct tunnel was developed. It was shown that even though the starting points and optimization method are different, the objective function and optimum design variables converge to a value within a close range respectively, and consequently the optimum design program developed in this study is reliable and robust. 3D-design drawing can be drawn using automation design computer program developed in this study

  • PDF

프리스트레스트 콘크리트 보 단면의 최적설계 (Optimization of Prestressed Concrete Beam Section)

  • 조선규;최외호
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.91-101
    • /
    • 2000
  • As the computer related technology evolves a study for a practical use of real structure as well as its hteory for optimum design has been greatly advanced. But the study on optimum design of pre-stressed concrete beam(PSC-beam) bridge for the construction of national roads and highways in Korea is not sufficient. Since a standard section for the PSC-beam is proposed, it is practically used in designing the PSC-beam. It is noticed that the section using the current standard PSC-beam design to be an over-designed with its surplus safety factor. Therefore, it is necessary to consider economical PSC-beam section which automatically satisfies all requirement of design specifications. Thus, in this study, the optimum design methods of PSC-beam are carried out using the gradient-based search method and global search method. As a result of the optimum design method, it was confirmed that the design of PSC-beam has a serious properties to non-linearity and discontinuity. And the section that in economical and efficinet design methods than the current standard design method is proposed.

복합화력 발전플랜트의 근사 최적 열설계 해석 (Approximate Optimum Thermal Design Analysis of Combined Cycle Power Plant)

  • 전용준;신흥태;이봉렬;김동섭;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.782-787
    • /
    • 2001
  • An optimum thermal design analysis of the combined cycle power plant with triple pressure heat recovery steam generator was performed by the numerical simulation. The optimum design module used in the paper is DNCONF, a function of IMSL Library, which is widly known as a method to search for the local optimum. The objective function to be minimized is the cost of total power plant including the steam turbine power enhancement premium. The result of this paper shows that the cost reduces if the design point of power plant becomes the local optimum, and many calculations at various initial conditions should be carried out to get the value near the global optimum.

  • PDF

Simplified method to design laterally loaded piles with optimum shape and length

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.119-129
    • /
    • 2019
  • Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are introduced.

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • 제9권6호
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

연속 및 이산화 최적알고리즘에 의한 단동온실구조의 최적설계 (Optimum Design of Greenhouse Structures Using Continuous and Discrete Optimum Algorithms)

  • 박춘욱;이석건;이종원;이현우
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.199-206
    • /
    • 2005
  • In paper the discrete optimum design program was developed using the continuous and discrete optimum algorithms based on the SUMT and genetic algorithms. In this paper, the objective function is the weight of structures and the constraints are limits state design limits method. The design variables are diameter and thick of steel pipe. Design examples are given to show the applicability of the optimum design using the continuous and discrete optimum algorithms based on the SUMT and genetic algorithms of this study.

  • PDF

전철주기초 설계 자동화를 위한 최적화 알고리즘의 적용성 검토 (Applicability of Optimum Algorithm for Automated Design of Electric Railway Pole Foundation)

  • 이기열;박용대;정원용;송규석;임선택;김종남;이수형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1047-1053
    • /
    • 2009
  • This paper examined an applicability of optimum algorithm to develope an electric railway pole foundation automated design system. Based on the optimization theory that considered subgrade and bearing capacity characteristics, decided an optimum section of electric railway pole foundation. In this research, Optimum algorithm used the feasible direction method in structural analysis and design efficiently. Design variables are considered geometric properties and anchor bolt area of the electric railway pole foundation as optimum construction cost. Constraints are considered settlement., overturning and activity of foundation. And, also composed flexural and shearing strength. According to optimum analysis result., optimization theory is available more economical design comparing with railway pole foundation that is constructed by current standard drawing, and applicability verified in automated design system development.

  • PDF