• Title/Summary/Keyword: optimum blending

Search Result 78, Processing Time 0.029 seconds

Improvement of mechanical properties of interior fabric using soluble micro-fiber and low melting PET (용출형 극세사와 저온 융착사를 이용한 인테리어 직물의 기계적 물성 개선)

  • Kwon, Yoon-Jung;Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.13 no.1
    • /
    • pp.82-90
    • /
    • 2009
  • This research was made to manufacture the fabric for interior uses by spinning a low melting mono 4 denier PET staple fiber with a soluble 1.4 denier fine PET fiber. The blended yarn has a thickness ranging from 10's to 14's, and the soluble PET fine fiber was dissolved to make a pore in the polymer. Thereby a snap property was decreased and a resilience property was improved to be suitable for a functional synthetic leather. In order to attain the optimum condition, a mechanical property according to fineness, and mixing ratio of low melting polymer, warp density, weft density and blending ratio, and a heat contraction ratio according to blending ratio were experimented. The warp density, 220 T/inch of fine denier PET and the weft density, 64 T/inch of thick denier PET were generated to 4/4 both twill weave fabric having constant tensile property and thickness.

Effects of Mixing Ratio of Bagasse Pulp on Tissue Paper's Properties (Bagasse 펄프의 배합 비율이 화장지 특성에 미치는 영향)

  • Kim, Jeong-Jung;Han, Yun-Seok;Jeon, Byeong-Hoon;Han, Ki-Young;Jung, Chul-Hun;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.72-77
    • /
    • 2013
  • Tissue and paper manufacturing companies have common problems with increasing cost of imported virgin pulp and the restriction of using woods in the forest. Possibility of using bagasse pulp for solving those problems was studied. In order to reduce the production cost and study the dependency on pulps, bagasse pulp has been studied for mixing with Sw-BKP and Hw-BKP. Optimum blending ratio of wood pulps and bagasse pulp to enhance tissue properties were analyzed. Various properties of the hand sheet after blending of wood pulp and bagasse pulp were measured. As results, the bagasse pulp could substitute the hard wood pulp with similar properties of tissue. Therefore, we judged that the bagasse pulp was suitable for replacement of the hardwood pulp.

The Influence of Feed Energy Density and a Formulated Additive on Rumen and Rectal Temperature in Hanwoo Steers

  • Cho, Sangbuem;Mbiriri, David Tinotenda;Shim, Kwanseob;Lee, A-Leum;Oh, Seong-Jin;Yang, Jinho;Ryu, Chaehwa;Kim, Young-Hoon;Seo, Kang-Seok;Chae, Jung-Il;Oh, Young Kyoon;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1652-1662
    • /
    • 2014
  • The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a $4{\times}4$ Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at $30^{\circ}C$ and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower acetate:propionate (A/P) ratios than non-additive supplementation. High concentrate diets had significantly lower pH. Interactions between energy and additive were observed (p<0.01) in ammonia nitrogen production. Supplementation of diets with the additive resulted in lower rumen and rectal temperatures, hence the additive showed promise in alleviating undesirable effects of heat stress in cattle.

Color Stabilization of Low Toxic Antimicrobial Polypropylene/Poly(hexamethylene guanidine) Phosphate Blends by Taguchi Technique

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.411-416
    • /
    • 2009
  • The color stabilization of antimicrobial blends was studied by using poly(hexamethylene guanidine) phosphate (PHMG) as a highly efficient biocidal and nontoxic agent. The Taguchi method was used to determine the optimum conditions for the blending of PHMG in polypropylene (PP) matrix. To improve the yellowing phenomena, two kinds of stabilizer were used together: tetrakis[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)](IN1010) from phenol and tris(2,4-di-t-butylphenylphosphite) (IF168) from phosphorus. According to blend composition and mixing condition, six factors were chosen, with five levels being set for each factor. The orthogonal array was selected as the most suitable for fabricating the experimental design, L25, with 6 columns and 25 variations. The-smaller-the-better was used as an optimization criterion. The optimum conditions for these parameters were 10 phr for PHMG, 2 phr for IN1010, 1 phr for IF168, 10 min for mixing time, $210^{\circ}C$ for mixing temperature, and 30 rpm for rotation speed. Under these conditions, the yellowness index of the blend was 1.52. The processibility of the blends was investigated by Advanced Rheometric Expansion System (ARES). The blend with 0.5 w% PHMG content, diluted with PP, exhibited an antimicrobial characteristic in the shake flask method.

Effects of Environmental Factors such as Temperature and Ozone Concentration on the Properties of BR/Crystalline Rubber Blend (BR고무/결정성고무 블렌드의 물성에 미치는 온도 및 오존농도 등의 환경인자의 영향)

  • Park, Chan-Young;Lee, Won-Kee;Min, Seong-Kee
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • The butadiene rubber(BR) blends with chloroprene rubber(CR) were prepared by mechanical mixing method. Cure characteristics, mechanical properties, ozone resistance properties and dynamic mechanical properties were subsequently examined. The properties of ozone resistance of pure BR was significantly improved through blending with 50 wt% CR. Dynamic characteristics determined from a Rheovibron generally showed two glass transition($T_g$) for the entire blends, $tan{\delta}$ peak monotonically shifted toward the higher temperature with the increasing content of CR. Optimum cure time of compound was significantly lengthened with loading of CR.

Effects of Eggshell Powder on Clubroot Disease Control and the Growth of Chinese Cabbage (달걀껍질이 배추의 생육과 무사마귀병 발병억제에 미치는 영향)

  • Kim, Byeong-Kwan;Lim, Tae-Heon;Kim, Youn-Hee;Park, Seok-Hwan;Lee, Sang-Hwa;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2008
  • Blending of eggshell powder into soil as ratio of 1:5, 1:10, 1:15, 1:20, and 1:25 did not affect seed germination rates of several crops including Chinese cabbage. The blending increased pH of distilled water and decreased the viability of resting spores of Plasmodiophora hrassicae. The ratio of non-viable resting spores in eggshell-blending water was over five times higher than in distilled water of the same pH. Chinese cabbage (cv. 'Norangbom') grew more in eggshell-blended soil than in non-treated soil, but other crops grew less. Leaf numbers and above ground growth of Norangbom increased to around 150% and 470%, respectively, in soil blended with $1:20{\sim}1:15$ of eggshell powder. Even though the optimum sizes of eggshell powder were $0.8{\sim}2.0mm$ for growth and smaller than 0.4 mm for inhibition of clubroot disease of Chinese cabbage, there was no statistical difference among the sizes. Soil pH was above 8.0 in all eggshell treatments without any statistical difference among them. Eggshell powder blending to 1:20 showed lower control efficacy, 58.5%, than registered fungicide 'Hokanna (flusulfamide)', 78.5%. However, Chinese cabbage of that blending ratio recorded the highest growth among the treatments. Therefore, blending of eggshell powder into clubroot-contaminated soil may make culture of Chinese cabbage possible by growth-increasing, even though eggshell powder could not inhibit clubroot disease entirely.

Basic Properties of Non-Clinker Cement Using Industrial By-Products (산업부산물을 이용한 무 클링커 시멘트의 기초적 특성)

  • 문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.11-16
    • /
    • 2002
  • The production of Portland cement involves maximum use of resources and energy, which leads to destruction of tile ecological environment, raising in serious environmental issues such as acid rain and the greenhouse effect. In order to combat the arising problems associated with Portland cement, it thus is necessary that a non-clinker cement should be developed. In this study, non-clinker cement is produced by blending granulate blast furnace slag with phosphogypsum as main materials, and small amounts of hydrate lime or waste lime as activators. This paper aims to investigate compressive strength according to various condition of mixing ratio, blame, W/C ratio and curing temperature. Compressive strength of non-clinker cement increases continuously according to increase in curing age and blain. Although the compressive strength is fairly comparable to that of OPC in the early curing age, it reaches a higher lever in the later age than that of OPC due to the optimum mixing ratio and the continuous reaction of slag and phosphogypsum. Results obtained from this study have shown that non-clinker cement could be used as a replacement of OPC.

  • PDF

Effect of Environmental Factors on the Properties of Polymeric Material : Oil and Ozone Reaction Time (고분자재료의 물성에 미치는 환경인자의 영향: 오일 및 오존반응시간)

  • 박찬영
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.511-515
    • /
    • 2000
  • The purpose of this experiment is to prepare ethylene propylene diene terpolymer(EPDM)/ acrylonitrile butadiene rubber(NBR) blend which represents good environmental resistant properties including favorable oil and ozone resistance. With incorporation of EPDM, NBR and other ingredients, the rubber and chemical additives were mixed by mechanical method such as Banbury mixer and open 2-roll mill. Then rubber vulcanizates were manufactured by hot press and mechanical properties, oil and ozone resistance of the test specimens were measured. The oil resistance and ozone resistance of EPDM and NBR, respectively, is remarkably improved by blending EPDM with NBR. The optimum results of oil and zone resistant characteristics were obtained at EPDM/NBR(=25/75 wt%) composition ratio.

  • PDF

Properties of Concrete Containing third binary mineral Admixture (3성분계 혼화재료로 사용한 콘크리트 특성)

  • 조일호;양재성;김진희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.95-101
    • /
    • 1999
  • This study was performed to evaluate the characteristics of workability and strength of the concrete containing mineral admixtures such as flyash, blast furnace slag, zeolite powder. As a result, considering their workability and strength, the optimum replacement ratio of them to plain concrete were obtained for each ternary admixture. This increased compressive strength was ascribed to both the closer parkinof fine particles and pozzolan reactivity of powders. This work showed that could be effectively utilized as a blending material without any decrease in the strength of early hydration stage. On the other hand, we found that the compressive strength at early ages ternary ordinary and high strength concrete untill 7 days was small, but that ternary concrete at 28days was highly increased about 31% and 15% extent.

  • PDF

Effect of gypsum content on the properties of PVC/Gypsum polymer blend material (PVC/Gypsum 복합체에서 Gypsum 의 영향)

  • N. V. Gian;Thai Hoan;Kim, M. Y.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.221-224
    • /
    • 2003
  • Polyvinyl chloride (PVC)/gypsum Polymer blend materials were prepared by melt blending of PVC with gypsum and additives. Effect of gypsum content on the properties of PVC/gypsum Polymer blend material was studied by investigating physico-mechanical properties, thermal properties and morphology development. It was found that the replacement of gypsum for methylene-butadiene-sarene (MBS) component in PVC/gypsum polymer blend material enhanced the tensile strength, but gradually decreased its impact strength. Besides, with the increase of gypsum content, the elongation at break of material gradually decreased. The Presence of the different gypsum contents made a shift of g1ass transition temperature and increased the thermal stability as well as the processing temperature range of polymer blends. The observation of morphology, the results of the physico-mechanical properties and thermal properties proved simultaneously that PVC/gypsum Polymer blend material with the gypsum content of 22.56 wt.% reached the optimum results among five kinds of PVC/gypsum Polymer blend materials investigated.

  • PDF