• Title/Summary/Keyword: optimum analysis

Search Result 5,548, Processing Time 0.032 seconds

Analysis of Siloxane Adsorption Characteristics Using Response Surface Methodology

  • Park, Jin-Kyu;Lee, Gyeung-Mi;Lee, Chae-Young;Hur, Kwang-Beom;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • A central composite design and response surface methodology were applied to investigate the optimum conditions for maximum adsorption capacity in activated alumina as an adsorbent. The optimized conditions were determined for adsorption capacity using variables of flow rate and temperature. It was found that flow rate and temperature greatly influenced the adsorption capacity, as determined by analysis of variance analysis of these variables. Statistical checks indicated that second order polynomial equations were adequate for representing the experimental values. The optimum conditions for adsorption capacity were $0^{\circ}C$ and 2,718 mL/min, with the estimated maximum adsorption capacity of 17.82%. The experimental adsorption capacity was 17.75% under these optimum conditions, which was in agreement with the predicted value of 17.82%.

The Optimum Fuzzy Vector Quantizer for Speech Synthesis

  • Lee, Jin-Rhee-;Kim, Hyung-Seuk-;Ko, Nam-kon;Lee, Kwang-Hyung-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1321-1325
    • /
    • 1993
  • This paper investigates the use of Fuzzy vector quantizer(FVQ) in speech synthesis. To compress speech data, we employ K-means algorithm to design codebook and then FVQ technique is used to analysize input speech vectors based on the codebook in an analysis part. In FVQ synthesis part, analysis data vectors generated in FVQ analysis is used to synthesize the speech. We have fined that synthesized speech quality depends on Fuzziness values in FVQ, and the optimum fuzziness values maximized synthesized speech SQNR are related with variance values of input speech vectors. This approach is tested on a sentence, and we compare synthesized speech by a convensional VQ with synthesized speech by a FVQ with optimum Fuzziness values.

  • PDF

The Improvement of Efficiency Performance for Moving Magnet Type Linear Actuator Using the Neural Network and Finite Element Method (신경회로망과 FEM을 이용한 가동 영구자석형 리니어 엑츄에이터의 성능 향상에 관한 연구)

  • 조성호;김덕현;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.63-68
    • /
    • 2004
  • This paper presents an approach to optimum design of Moving Magnet Type Linear Oscillatory Actuator(MM-LOA). The Finite Element Method is applied to characteristic parameters for characteristic analysis and in order to reduce modeling time and efforts, the moving model node technique is used. In addition the neural network is used to reduce computational time of analysis according to changing design variable. To confirm the validity of this study, optimum design results are compared with results of analysis procedure that is verified by experiment.

A Study on Optimum Design of 2MW Wind Turbine Gearbox Using a Integrated Design Software (통합설계프로그램을 이용한 2MW 풍력발전시스템용 기어박스의 최적설계에 관한 연구)

  • Choi, Young-Hyuk;Park, Koo-Ha;Jo, Joon-Haeng;Lee, In-Woo;Oh, Sei-Woong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.249-252
    • /
    • 2006
  • Wind turbine gearbox is a complex mechanical system that includes gear trains, shafts, bearings, and gearbox housings. All these component are interacting with each other therefore changing certain design parameter will affect other components. RomaxDesigner enables a reduction in development period by simulating the full gearbox system. The gear pairs, bearings and shafts are represented as analysis objects and the complex components are modelled by means of reduced stiffness matrices. The software allows durability analysis and advanced contact analysis including the effects of system misalignments in gear and bearing. In this paper the 2MW wind turbine gearbox was model led and a study on optimum design was conducted

  • PDF

Cost and Benefit Analysis for Safety Management Cost by FMEA/HAZOP at Governor Station (가스 공급기지에서 FMEA/HAZOP에 의한 안전관리 비용-편익분석)

  • 장서일;이헌창;조지훈;오신규;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • Cost-benefit analysis was investigated to propose the analysis method of the effect of investment and the optimum investment level of safety management cost for preventing gas accident in the B governor station. From five classifications of safety management costs consisting of cost items with similar characters and potential accident costs calculated by risk assessments(FMEA/HAZOP), we found that the order of the benefit(the reduction cost of the potential accident cost) was the instrument increase and repair cost > the safety checking and inspection cost > the labor and training cost > the safety equipment and corresponding cost > the research and development cost. As the benefit was increased with increasing the investment cost, the effect of investment was increased with decreasing the Investment cost. As a result, the optimum safety management cost was estimated and the investment level was analyzed by the model of optimum investment level.

  • PDF

Ratio Optimization Between Sizes of Components of Heat Recovery Steam Generator in Combined Cycle Gas Turbine Power Plants (복합사이클 발전플랜트 폐열회수 보일러의 구성요소 크기비의 최적화)

  • In, Jong-Soo;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.403-410
    • /
    • 2009
  • This paper proposes a new approach to find the optimum ratios between sizes of the heat exchangers of the heat recovery steam generator (HRSG) system with limited size to maximize the efficiency of the steam turbine (bottom) cycle of combined cycle power plants (CCPP), but without performing the bottom cycle analysis. This could be achieved by minimizing the unavailable exergy (the sum of the destroyed and the lost exergies) resulted from the heat transfer process of the HRSG system. The present approach is relatively simple and straightforward because the process of the trial-and-error method, typical in performing the bottom cycle analysis for the system optimization, could be avoided. To demonstrate the usefulness of the present method, a single-stage HRSG system was chosen and the optimum evaporation temperature was obtained corresponding to the condition of the maximum useful work. The results show that the optimum evaporation temperature based on the present exergy analysis appears similar to that based on the bottom cycle analysis. Also shown is the dependency of size (NTU) ratios between the heat exchangers on the inlet gas temperature, which is another important factor in determining the optimum condition once overall size of the heat recovery steam generator is given. The present approach turned out to be a useful tool for optimization of the singlestage HRSG systems and can easily be extended to multi-stage systems.

Integrated Genetic Algorithm with Direct Search for Optimum Design of RC Frames (직접탐색을 이용한 유전자 알고리즘에 의한 RC 프레임의 최적설계)

  • Kwak, Hyo-Gyoung;Kim, Ji-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 2008
  • An improved optimum design method for reinforced concrete frames using integrated genetic algorithm(GA) with direct search method is presented. First, various sets of initially assumed sections are generated using GA, and then, for each resultant design member force condition optimum solutions are selected by regression analysis and direct search within pre-determined design section database. In advance, global optimum solutions are selected from accumulated results through several generations. Proposed algorithm makes up for the weak point in standard genetic algorithm(GA), that is, low efficiency in convergence causing the deterioration of quality of final solutions and shows fast convergence together with improved results. Moreover, for the purpose of elevating economic efficiency, optimum design based on the nonlinear structural analysis is performed and therefore makes all members resist against given loading condition with the nearest resisting capacity. The investigation for the effectiveness of the introduced design procedure is conducted through correlation study for example structures.

Management of small yellow croaker stock in Korean waters based on production value-per-recruit analysis (가입당 생산액 분석에 의한 한국 해역 참조기 Larimichthys polyactis 자원의 관리)

  • Zhang, Chang-Ik;Lee, Eun-Ji;Kang, Hee-Joong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.467-475
    • /
    • 2014
  • This study was performed to estimate optimum fishing mortality (F) and the age at first capture ($t_c$) for small yellow croaker in Korean waters. We first estimated optimum F and $t_c$ using traditional yield-per-recruit (YPR) analysis, and the results were 0.8/year and 2.5 years old, respectively. However, the individual fish price per unit weight of small yellow croaker in Korea increases dramatically by size. Thus, we developed an alternative method, which is called as production value-per-recruit (PPR) analysis. We developed two types of the PPR analysis, that is, the discrete function and the continuous function method. We estimated optimum F and $t_c$ using the two types of the PPR analysis and compared the results. The optimum F and $t_c$ from the discrete function method, were 0.3/year and 5.0 years old, respectively, while those from the continuous function method were 0.5/year and 3.5 years old, respectively. These PPR estimates were much more conservative for the stock management than the traditional YPR analysis, which can prevent the fish stock from the economic overfishing. As a result, the PPR analysis could be more proper approach for stock assessment in the case that the individual fish price per unit weight increases dramatically by size like small yellow croaker in Korea.

Optimum Design of Plane Steel Frames Using Second-Order Inelastic Analysis and Section Increment Method (2차 비탄성해석과 단면점증법을 이용한 평면 강골조 구조물의 최적설계)

  • Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.143-151
    • /
    • 2008
  • In this paper, the optimum design of plane steel frames using second-order inelastic analysis and section increment method is presented. Since the second-order inelastic analysis accounts for geometric and material nonlinearities of the whole system as well as its component members, the design method based on second-order inelastic analysis does not require separate member capacity checks after analysis. A section increment method proposed by this paper is used as optimization technique. The weight of structures is treated as the objective function. The constraint functions are defined by load-carrying capacities, deflections, inter-story drifts, and ductility requirement. The effectiveness of the proposed method are verified by comparing the results of the proposed method with those of other method.

Reliability Analysis on the Decision Method of Lateral Flow of Foundation Piles for Abutment (교대 기초말뚝의 측방유동 판정식에 관한 신뢰성 해석)

  • Ahn, Jong-Pil;Kim, Gyu-Deok;Kim, Il-Goo;Choi, Jin-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1090-1097
    • /
    • 2008
  • This study conducted the decision method of lateral flow in abutment structures founded on the soft soils and the reliability analysis on the foundation pile for abutment. On the basis of the results, this study proposed the reliability design model. Reliability analysis was conducted by applying second moment method, point estimation method, and expected total cost minimization to lateral movement index, lateral movement decision index, modified lateral movement decision index, and circular failure safety factor for the decision criteria of lateral flow. The reliability index by analysis method had a similar tendency each other. Point estimation method was found as a practical method in the aspect of convenience because it could conduct the analysis only by mean and standard deviation as well as the partial derivative on random variables was not necessary. Optimum reliability index and optimum safety according to increasing in failure factors and load ratio were analyzed and loads and resistance factors of the design criteria of optimum reliability were estimated. It presented rational design model which can consider construction level and stability and economical efficiency overall.

  • PDF