• Title/Summary/Keyword: optimized fuzzy controller

Search Result 101, Processing Time 0.023 seconds

Analysis of Dynamic Model and Design of Optimized Fuzzy PID Controller for Constant Pressure Control (정압제어를 위한 동적모델 해석 및 최적 퍼지 PID 제어기설계)

  • Oh, Sung-Kwun;Cho, Se-Hee;Lee, Seung-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.303-311
    • /
    • 2012
  • In this study, we introduce a dynamic process model as well as the design methodology of optimized fuzzy controller for its efficient application to vacuum production system to produce a semiconductor, solar module and display and so on. In a vacuum control field, PID control method is widely used from the viewpoint of simple structure and preferred performance. But, PID control method is very sensitive to the change of environment of control system as well as the change of control parameters. Therefore, it's difficult to get a preferred performance results from target system which has a complicated structure and lots of nonlinear factors. To solve such problem, we propose the design methodology of an optimized fuzzy PID controller through a following series of steps. First a dynamic characteristic of the target system is analyzed through a series of experiments. Second the process model is built up and its characteristic is compared with real process. Third, the optimized fuzzy PID controller is designed using genetic algorithms. Finally, the fuzzy controller is applied to target system and then its performance is compared with that of other conventional controllers(PID, PI, and Fuzzy PI controller). The performance of the proposed fuzzy controller is evaluated in terms of auto-tuned control parameters and output responses considered by ITAE index, overshoot, rise time and steady state time.

A Position Control of Induction Motor using Optimized Fuzzy Controller (최적 퍼지제어기를 이용한 유도모터의 위치제어)

  • Choo, Yeon-Gyu;Kang, Shin-Chul;Lee, Chang-Ho;Kim, Jong-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.732-735
    • /
    • 2007
  • Recently the control of induction motor for position control has been extensively studied. The representative method is PIDA controller proposed by Jung&Dorf. By designed PIDA controller' parameter had large value. Moreover, this method is very analyze, so that, not adapted controller parameter in disturbance. Besides using generalize fuzzy controller. Because input and output membership function is linguistic type, therefore system response is very slow. So, in this paper we used optimized fuzzy controller. Optimized fuzzy controller is output membership function is unity value. The controller performance was estimated applied to induction motor' position control.

  • PDF

Design of Optimized Fuzzy Cascade controller Based on Partical Swarm Optimization for Ball & Beam System (볼빔 시스템에 대한 입자 군집 최적화를 이용한 최적 퍼지 직렬형 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2322-2329
    • /
    • 2008
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of particle swarm optimization(PSO) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling facrors) of each fuzzy controller using PSO. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on PSO, is presented in comparison with the conventional PD cascade controller based on serial genetic alogritms.

Design of Optimized Interval Type-2 Fuzzy Controller and Its Application (최적 Interval Type-2 퍼지 제어기 설계 및 응용)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1624-1632
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized Interval Type-2 fuzzy controller. The fixed MF design of type-1 based FLC leads to the difficulty of rule-based control design for representing the linguistically uncertain expression. In the Type-2 FLC as the expanded type of Type-1 FLC, we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. Type-2 FLC has a robust characteristic in the unknown system with unspecific noise when compared with Type-1 FLC. Through computer simulation as well as practical experiment, we compare their performance by applying both the optimized Type-1 and Type-2 fuzzy cascade controllers to ball and beam system. To evaluate each controller performance, we consider controller characteristic parameters such as maximum overshoot, delay time, rise time, settling time and steady-state error.

The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms (최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로)

  • Kim, Wook-Dong;Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Optimization of fuzzy controller for nonlinear buildings with improved charged system search

  • Azizi, Mahdi;Ghasemi, Seyyed Arash Mousavi;Ejlali, Reza Goli;Talatahari, Siamak
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.781-797
    • /
    • 2020
  • In recent years, there is an increasing interest to optimize the fuzzy logic controller with different methods. This paper focuses on the optimization of a fuzzy logic controller applied to a seismically excited nonlinear building. In most cases, this problem is formulated based on the linear behavior of the structure, however in this paper, four sets of objective functions are considered with respect to the nonlinear responses of the structure as the peak interstory drift ratio, the peak level acceleration, the ductility factor and the maximum control force. The Improved Charged System Search is used to optimize the membership functions and the rule base of the fuzzy controller. The obtained results of the optimized and the non-optimized fuzzy controllers are compared to the uncontrolled responses of the structure. Also, the performance of the utilized method is compared with various classical and advanced optimization algorithms.

Genetically optimized self-tuning Fuzzy-PI controller for HVDC system (HVDC 시스템을 위한 진화론적으로 최적화된 자기 동조 퍼지제어기)

  • Wang, Zhong-Xian;Yang, Jueng-Je;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.279-281
    • /
    • 2006
  • In this paper, we study an approach to design a self-tuning Fuzzy-PI controller in HVDC(High Voltage Direct Current) system. In the rectifier of conversional HVDC system, turning on, turning off, triggering and protections of thyristors have lots of problems that can make the dynamic instability and cannot damp the dynamic disturbance efficiently. The above problems are solved by adapting Fuzzy-PI controller for the fire angle control of rectifier.[7] The performance of the Fuzzy-PI controller is sensitive to the variety of scaling factors. The design procedure dwells on the use of evolutionary computing(Genetic Algorithms, GAs). Then we can obtain the optimal scaling factors of the Fuzzy-PI controller by Genetic Algorithms. In order to improve Fuzzy-PI controller, we adopt FIS to tune the scaling factors of the Fuzzy-PI controller on line. A comparative study has been performed between Fuzzy-PI and self-tuning Fuzzy-PI controller, to prove the superiority of the proposed scheme.

  • PDF

Design of Optimized Fuzzy PD Cascade Controller Based on Parallel Genetic Algorithms (병렬유전자 알고리즘 기반 최적 Fuzzy PD Cascade 제어기의 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.329-336
    • /
    • 2009
  • In this paper, we propose the design of an optimized fuzzy cascade controller for rotary inverted pendulum system by means of Hierarchical Fair Competition-based Genetic Algorithms (HFCGA) which is a kind of parallel genetic algorithms. The rotary inverted pendulum system is the system for controlling the inclination of pendulum axis through the adjustment of rotating arm. The control objective of the system is to control the position of rotating arm and to make the pendulum maintain the unstable equilibrium point of vertical position. To control rotary inverted pendulum system, we designs the fuzzy cascade controller scheme consisted of two fuzzy controllers and optimizes the parameters of the designed controller by means of HFCGA. A comparative analysis between the simulation and the practical experiment demonstrates that the proposed HFCGA based fuzzy cascade controller leads to superb performance in comparison with the conventional LQR controller as well as HFCGA based PD cascade controller.

Design of Optimized Fuzzy Cascade Controller Based on HFCGA for Ball & Beam System (볼빔 시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적 퍼지 Cascade 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.391-398
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. The displacement change the position of ball leads to the change of the angle of the beam which determines the position angle of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling factors) of each fuzzy controller using HFCGA. The inner controller controls the position of lever arm which corresponds to the position angle of a servo motor and the outer controller decides the set-point value of the inner controller. HFCGA is a kind of parallel genetic algorithms(PGAs), and helps alleviate the premature convergence being generated in conventional genetic algorithms (GAs). For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Design of Optimized Fuzzy Controller for Rotary Inverted Pendulum System Using Differential Evolution (차분진화 알고리즘을 이용한 회전형 역 진자 시스템의 최적 퍼지 제어기 설계)

  • Kim, Hyun-Ki;Lee, Dong-Jin;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.407-415
    • /
    • 2011
  • In this study, we propose the design of optimized fuzzy controller for the rotary inverted pendulum system by using differential evolution algorithm. The structure of the differential evolution algorithm has a simple structure and its convergence to optimal values is superb in comparison to other optimization algorithms. Also the differential evolution algorithm is easier to use because it have simpler mathematical operators and have much less computational time when compared with other optimization algorithms. The rotary inverted pendulum system is nonlinear and has a unstable motion. The objective is to control the position of the rotating arm and to make the pendulum to maintain the unstable equilibrium point at vertical position. The output performance of the proposed fuzzy controller is considered from the viewpoint of performance criteria such as overshoot, steady-state error, and settling time through simulation and practical experiment. From the result of both simulation and practical experiment, we evaluate and analyze the performance of the proposed optimal fuzzy controller from the comparison between PGAs and differential evolution algorithms. Also we show the superiority of the output performance as well as the characteristic of differential evolution algorithm.