• Title/Summary/Keyword: optimized design method

Search Result 1,620, Processing Time 0.028 seconds

A Study on Optimal Operation Conditions for an Electronic Device Alignment System by Using Design of Experiments (실험계획법을 이용한 전자부품 위치정렬장치 최적 운영조건 사례연구)

  • Lee, Dong Heon;Lee, Mi Lim;Bae, Suk Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.453-466
    • /
    • 2015
  • Purpose: The purpose of this study is to design a systematic method to estimate optimal operation conditions of design variables for an electronic device alignment system. Method: The 2-level factorial design and the central composite design are used in order to plan experiments. Based on the experiment results, a regression model is established to find optimal conditions for the design variables. Results: 3 of 5 design variables are selected as major factors that affect the alignment system significantly. The optimized condition for each variable is estimated by using a sequential experiment plan and a quadratic regression model. Conclusion: The method designed in this study provides an efficient and systematic plan to select the optimized operation condition for the design variables. The method is expected to improve inspection accuracy of the system and reduce the development cost and period.

Soft Ground Settlement Estimation Using Neural Network (인공신경망을 이용한 연약지반 침하량 산정)

  • Roh, Jae-Ho;Won, Hyeo-Jea;Oh, Doo-Hwan;Hwang, Sun-Geun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1405-1410
    • /
    • 2006
  • Purpose of this research is that offers basic data for optimized design using neural network method to calculate consolidation settlement in study area. In this research, preformed the neural network method that analyzed the settlement characteristics of soft ground nearby study area. Thus, data base established on ground properties and consolidation settlement of neighboring area. In addition, designed the optimum neural network model for prediction of settlement through network learning and consolidation settlement prediction using consolidation settlement DB and ground properties DB. Optimized neural network model decided by repeated learning for various case of hidden layers. In this study, proposed that the optimized consolidation settlement calculation method using neural network and verified which is the optimized consolidation settlement calculation method using neural network.

  • PDF

Optimized Structure Design of Composite Cyclocopter Rotor System using RSM (반응면 기법을 이용한 복합재료 사이클로콥터 로터의 최적 구조 설계)

  • Hwang In Seong;Hwang Chang Sup;Kim Min Ki;Kim Seung Jo
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.52-58
    • /
    • 2005
  • A cyclocopter propelled by the cycloidal blade system, which can be described as a horizontal rotary wing, is a new concept of VTOL vehicle. In this paper, optimized structure design is carried out for the aerodynamically optimized cyclocopter rotor system. Database is obtained fer design variables such as stacking sequence (ply angles), number of plies and spar locations through MSC/NASTRAN and optimum values are determined by RSM and some other optimizing processes. For the rotor system including optimized blade and composite hub m, the maximum stress by static analysis is within the failure criteria. And the rotor system is designed for the purpose of avoiding possible dynamic instabilities by inconsistency between frequencies of rotor rotation and some low natural frequencies of rotor.

Design of Railway Vehicle Wheel Profile Suitable for Dual-rail Profile (듀얼 레일 형상에 적합한 철도차량의 차륜 형상 설계)

  • Byon, Sung-Kwang;Lee, Dong-Hyeong;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.30-37
    • /
    • 2017
  • When a wheel profile of a train-tram is designed, both train and tram tracks should be considered. This study designed a wheel profile that enables high-speed driving(200km/h) on the train track and low speed driving on the tram track with multiple sharp curves. The study used the approximation optimization method to reduce cost and time, used the sequential quadratic programming method as the optimized algorithm, and the central composite design and response surface method as an approximate model. The optimized wheel shape based on this approximation optimization method reduced wear of the initial wheel showed a better performance in terms of derailment and lateral force.

Analysis of Dynamic Model and Design of Optimized Fuzzy PID Controller for Constant Pressure Control (정압제어를 위한 동적모델 해석 및 최적 퍼지 PID 제어기설계)

  • Oh, Sung-Kwun;Cho, Se-Hee;Lee, Seung-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.303-311
    • /
    • 2012
  • In this study, we introduce a dynamic process model as well as the design methodology of optimized fuzzy controller for its efficient application to vacuum production system to produce a semiconductor, solar module and display and so on. In a vacuum control field, PID control method is widely used from the viewpoint of simple structure and preferred performance. But, PID control method is very sensitive to the change of environment of control system as well as the change of control parameters. Therefore, it's difficult to get a preferred performance results from target system which has a complicated structure and lots of nonlinear factors. To solve such problem, we propose the design methodology of an optimized fuzzy PID controller through a following series of steps. First a dynamic characteristic of the target system is analyzed through a series of experiments. Second the process model is built up and its characteristic is compared with real process. Third, the optimized fuzzy PID controller is designed using genetic algorithms. Finally, the fuzzy controller is applied to target system and then its performance is compared with that of other conventional controllers(PID, PI, and Fuzzy PI controller). The performance of the proposed fuzzy controller is evaluated in terms of auto-tuned control parameters and output responses considered by ITAE index, overshoot, rise time and steady state time.

Optimal design of Self-Organizing Fuzzy Polynomial Neural Networks with evolutionarily optimized FPN (진화론적으로 최적화된 FPN에 의한 자기구성 퍼지 다항식 뉴럴 네트워크의 최적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) by means of genetically optimized fuzzy polynomial neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms(GAs). The conventional SOFPNNs hinges on an extended Group Method of Data Handling(GMDH) and exploits a fixed fuzzy inference type in each FPN of the SOFPNN as well as considers a fixed number of input nodes located in each layer. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, a collection of the specific subset of input variables, and the number of membership function) and addresses specific aspects of parametric optimization. Therefore, the proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series).

  • PDF

Optimization on Weight of High Pressure Hydrogen Storage Vessel Using Genetic Algorithm (유전 알고리즘을 이용한 고압 수소저장용기 중량 최적화)

  • Lee, Y.H.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.203-211
    • /
    • 2019
  • In this study, the weight of type IV pressure vessel is optimized through the burst pressure condition using the finite element analysis (FEA) based on the genetic algorithm (GA). The optimization design variables include the thickness of composite layers and the winding angles. The optimized design variables are validated using the numerical simulations for the pressure vessel. Consequently, the weight is decreased by about 6.5% as compared to the previously reported results for Type III pressure vessel. Additionally, a method which reduces the entire optimization time is proposed. In the original method, the population size is constant across all generations. However, the proposed method could reduce the workload through the reduction of the population size by half for every 25 generations. Thus, the proposed method is observed to increase the weight by about 0.1%, however, the working time for the optimization could be decreased by about 46.5%.

Analytical Study on the Optimized Design of Engine Bearings for a Passenger Car (자동차용 엔진베어링의 최적설계에 관한 해석적 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, the minimum oil film thickness and the maximum oil film pressure of engine bearings have been analyzed by using the elastohydrodynamic theory and Taguchi's design method as functions of the oil groove width, oil hole diameter, oil hole position, and oil supply pressure. The optimized design of the engine bearing f3r an automotive Diesel engine is very important for supporting a load-carrying capacity due to gas pres-sures from the engine combustion chamber and inertia forces of the piston. The optimized design data of engine bearings indicated that the optimized oil groove width and an oil diameter of a engine bearing are 8mm at the speed of 2,000 rpm for a given 4-cylinder Diesel engine. Thus, the oil groove oil groove and an oil hole for high performances of an engine bearing may be considered as major design parameters compared to other design factors, which are strongly related to the minimum oil film thickness and the maximum oil pressure distribution of the engine oil.

Controller Design of BLDC Motor Fin Position Servo System by Employing H-infinity Loop Shaping Method (H-infinity Loop Shaping 방법을 이용한 BLDC 전동기 핀 위치제어시스템 제어기 설계)

  • Zhu, He-Lin;Mok, Hyung-Soo;Lee, Hyeong-Geun;Han, Soo-Hee;Seo, Hyeon-Uk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2019
  • This study proposes a robust control of a fin position servo system using the H-infinity loop-shaping method. The fin position control system has a proportional (P) position controller and a proportional-integral (PI) controller. In this work, the position control loop requires a wide bandwidth. No current control loop exists due to the compact design of the system. Hence, the controller parameters are difficult to determine using the traditional cascade design method. The $H_{\infty}$ controller design method is used to design the controller's gain to achieve good performance and robustness. First, the transfer function of the system, which can be divided into tunable and fixed parts, is derived. The tunable part includes the position P controller and speed PI controller. The fixed part includes the rest of the system. Second, the optimized controller parameters are calculated using Matlab $H_{\infty}$ controller design program. Finally, the system with optimized controller is tested by simulation and experiment. The control performance is satisfactory, and the $H_{\infty}$ controller design method is proven to be valid.

Road Alignment Design Using GIS

  • Kang, In-Joon;Lee, Jun-Seok;Kim, Tae-Hun;Park, Hyun
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • In this study, several basic data for road design and GIS data were used for selecting the optimized road alignment database system. The cut and fill volumes were compared with existing manual road design method through the analysis and data application in this database system. We solved and estimated objective, economic, environmental and technical problems caused in road construction comparing existing manual method with the road alignment which was selected in GIS automatically. Also, we performed three dimensional simulation with the existing road design program and simulation of virtual reality through Virtual GIS. This study showed the method in selecting the optimized road alignment through the analysis and comparison of the selected road alignment. The goal of this study is comparison and analysis of definite cut and fill volume and environmental problem after the road construction through analyzing and comparing the social, economic, technical and environmental aspect in the road alignments with various statistic data.

  • PDF