• Title/Summary/Keyword: optimizations

Search Result 272, Processing Time 0.031 seconds

Remarks on of Optimizations of Time-Resolved Pulse Thermography for Nondestructive Testing Evaluations (비파괴검사 평가를 위한 시간-분해 펄스열화상의 최적화에 관한 제고)

  • Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.226-231
    • /
    • 2013
  • 펄스 열화상에서 서모그램 등 데이터의 플롯에 의해 표시되어지는 로그-로그 플롯을 활용해서 특정하게 정류(rectification)하여 펄스 서모그램을 잘 사용하도록 정의하고 열화상 신호복원(thermographic signal reconstruction; TSR) 기법에 의해 실험 데이터를 피팅하도록 한다, 이와 같은 물리적인 해석 및 수학적 대수기법에 의해 펄스열화상은 단순하면서도 효율적인 정규화가 가능하게 될 수 있다. 펄스열화상의 최적화는 로그대수 유도로 비교되는 콘트라스트(contrast)의 초기 검출과 TSR의 사용이라는 두 가지 돋보이는 접근 방법에 기반하여 이루어진다. 펄스자극열화상을 최적화하기 위해서 두 개의 매개변수, 즉 결함 콘트라스트의 신호 대 잡음비와 추출에 대한 선인식을 고려하는 것이 필요하다.

Robust Discretization of LTI Systems with Polytopic Uncertainties and Aperiodic Sampling

  • Lee, Dong Hwan;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1255-1263
    • /
    • 2015
  • In the previous work, the authors studied the problem of robust discretization of linear time-invariant systems with polytopic uncertainties, where linear matrix inequality (LMI) conditions were developed to find an approximate discrete-time (DT) model of a continuous-time (CT) system with uncertainties in polytopic domain. The system matrices of obtained DT model preserved the polytopic structures of the original CT system. In this paper, we extend the previous approach to solve the problem of robust discretization of polytopic uncertain systems with aperiodic sampling. In contrast with the previous work, the sampling period is assumed to be unknown, time-varying, but contained within a known interval. The solution procedures are presented in terms of unidimensional optimizations subject to LMI constraints which are numerically tractable via LMI solvers. Finally, an example is given to show the validity of the proposed techniques.

EISC pipelineing optimizations for processor speed improvements (EISC processor의 속도 향상을 위한 pipelineing 최적화)

  • Son, Mu-Chang;Kim, In-Soo;Min, Hyoung-Bok;Lee, Young-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2275-2276
    • /
    • 2008
  • Currently the quarter prediction giga it is used SE3208 from EISC ISA [1]] where it does in base. But the prediction which is perfect is difficult improved Pipeline structures and PC the structure which is not Delay to add it decided. Even PC and IF/ID blocks, the area and expense were added, but Bubble without it will be able to control Conditional Branch doors and the possibility of decreasing a help in processor performance improvements.

  • PDF

A novel heuristic search algorithm for optimization with application to structural damage identification

  • Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.449-461
    • /
    • 2017
  • One of the most recent methods of structural damage identification is using the difference between structures responses after and before damage occurrence. To do this one can formulate the damage detection problem as an inverse optimization problem where the extents of damage in each element are considered as the optimizations variables. To optimize the objective function, heuristic methods such as GA, PSO etc. are widely utilized. In this paper, inspired by animals such as bat, dolphin, oilbird, shrew etc. that use echolocation for finding food, a new and efficient method, called Echolocation Search Algorithm (ESA), is proposed to properly identify the site and extent of multiple damage cases in structural systems. Numerical results show that the proposed method can reliably determine the location and severity of multiple damage cases in structural systems.

Genetic algorithms for balancing multiple variables in design practice

  • Kim, Bomin;Lee, Youngjin
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.241-256
    • /
    • 2017
  • This paper introduces the process for Multi-objective Optimization Framework (MOF) which mediates multiple conflicting design targets. Even though the extensive researches have shown the benefits of optimization in engineering and design disciplines, most optimizations have been limited to the performance-related targets or the single-objective optimization which seek optimum solution within one design parameter. In design practice, however, designers should consider the multiple parameters whose resultant purposes are conflicting. The MOF is a BIM-integrated and simulation-based parametric workflow capable of optimizing the configuration of building components by using performance and non-performance driven measure to satisfy requirements including build programs, climate-based daylighting, occupant's experience, construction cost and etc. The MOF will generate, evaluate all different possible configurations within the predefined each parameter, present the most optimized set of solution, and then feed BIM environment to minimize data loss across software platform. This paper illustrates how Multi-objective optimization methodology can be utilized in design practice by integrating advanced simulation, optimization algorithm and BIM.

Triangular units based method for simultaneous optimizations of planar trusses

  • Mortazavi, Ali;Togan, Vedat
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.195-210
    • /
    • 2017
  • Simultaneous optimization of trusses which concurrently takes into account design variables related to the size, shape and topology of the structure is recognized as highly complex optimization problems. In this class of optimization problems, it is possible to encounter several unstable mechanisms throughout the solution process. However, to obtain a feasible solution, these unstable mechanisms somehow should be rejected from the set of candidate solutions. This study proposes triangular unit based method (TUBM) instead of ground structure method, which is conventionally used in the topology optimization, to decrease the complexity of search space of simultaneous optimization of the planar truss structures. TUBM considers stability of the triangular units for 2 dimensional truss systems. In addition, integrated particle swarm optimizer (iPSO) strengthened with robust technique so called improved fly-back mechanism is employed as the optimizer tool to obtain the solution for these class of problems. The results obtained in this study show the applicability and efficiency of the TUBM combined with iPSO for the simultaneous optimization of planar truss structures.

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (II) - Structural Examples - (선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (II) - 구조예제 -)

  • Park Ki-Jong;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1061-1069
    • /
    • 2005
  • In part I of this papter Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is developed to conduct optimization for nonlinear behavior structures. The method/algorithm is also verified to show its convergency and optimality. In this present paper, the NROESL algorithm is applied to several structural problems with geometric and/or material nonlinearity. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

Study on Optimized Machining of Duralumin using AFC (AFC를 이용한 두랄루민의 최적화 가공에 관한 연구)

  • Kang, Min-Seog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Studies on the optimizations of machining processes use two different methods. The first is feed control in real-time by spindle load in a machine tool. The second is feed scheduling in NC code control by material removal rate using a CAD/CAM system. Each approach possesses its respective merits and issues compared to the other. That is, each method can be complementary to the other. The purpose of the study is to improve the productivity of the bulkhead, an aircraft Duralumin structure. In this paper, acceleration or deceleration of cutting tool by spindle load data is achieved using adaptive feed control macro programming in a machine tool.

Blade Optimization of a Transonic Compressor Using a Multiple Surrogate Model (가중평균대리모델을 사용한 천음속 압축기 블레이드 최적화)

  • Samad, Abdus;Choi, Jae-Ho;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.317-326
    • /
    • 2008
  • The main purpose of the present study is to perform shape optimizations of transonic compressor blade in order to enhance its performance. In this study, the Latin hypercube sampling of design of experiments and the weighted average surrogate model with the help of a gradient based optimization algorithm are used within design space by the lower and upper limits of each design variable and for finding optimum designs, respectively. 3-D Reynolds-averaged Navier-Stokes solver is used to evaluate the objective functions of adiabatic efficiency and pressure ratio. Six variables from lean and airfoil thickness profile are selected as design variables. The results show that the adiabatic efficiency is enhanced by 1.43% by efficiency optimization while the pressure ratio is increased very small, and pressure ratio is increased by 0.24% by pressure ratio optimization.

Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution (고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.