• Title/Summary/Keyword: optimization-based

Search Result 7,899, Processing Time 0.046 seconds

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.

Feasibility and Efficacy of Adaptive Intensity Modulated Radiotherapy Planning according to Tumor Volume Change in Early Stage Non-small Cell Lung Cancer with Stereotactic Body Radiotherapy (폐암의 정위적체부방사선치료에서 육안적종양체적 변화에 따른 적응방사선치료의 효용성 및 가능성 연구)

  • Park, Jae Won;Kang, Min Kyu;Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • The purpose of this study is to evaluate efficacy and feasibility of adaptive radiotherapy according to tumor volume change (TVC) in early stage non-small cell lung cancer (NSCLC) using stereotactic body radiotherapy (SBRT). Twenty-two lesions previously treated with SBRT were selected. SBRT was usually performed with a total dose of 48 Gy or 60 Gy in four fractions with an interval of three to four days between treatments. For evaluation of TVC, gross tumor volume (GTV) was contoured on each cone-beam computed tomography (CBCT) image used for image guidance. Intensity modulated radiotherapy (IMRT) planning was performed in the first CBCT (CBCT1) using a baseline plan. For ART planning (ART), re-optimization was performed at $2^{nd}$, $3^{rd}$, and $4^{th}$ CBCTs (CBCT2, CBCT3, and CBCT4) using the same angle and constraint used for the baseline plan. The ART plan was compared with the non-ART plan, which generated copying of the baseline plan to other CBCTs. Average GTV volume was 10.7 cc. Average TVC was -1.5%, 7.3%, and -25.1% in CBCT2, CBCT3, and CBCT4 and the TVC after CBCT3 was significant (p<0.05). However, the nine lesions were increased GTV in CBCT2. In the ART plan, $V_{20\;Gy}$, $D_{1500\;cc}$, and $D_{1000\;cc}$ of lung were significantly decreased (p<0.05), and $V_{30\;Gy}$ and $V_{32\;Gy}$ of the chest wall were also decreased (p<0.05). While D min of planning target volume (PTV) decreased by 8.3% in the non-ART plan of CBCT2 compared with the baseline plan in lesions with increased tumor size (p=0.021), PTV coverage was not compromised in the ART plan. Based on this result, use of the ART plan may improve target coverage and OAR saving. Thus ART using CBCT should be considered in early stage NSCLC with SBRT.

Optimization of Hot-Water Extraction Conditions for Preparation of Polyphenol and Gallic Acid from Acorn (도토리의 Polyphenol 및 Gallic Acid 성분의 열수 추출조건 최적화)

  • Kim, Seong-Ho;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.58-65
    • /
    • 2008
  • The Acorn (Quercus acutissima CARRUTHERS), which contains a large quantity of tannin, should be developed as a processed food as the acorn is rich in natural antioxidants and other valuable components. Accordingly, acorn extraction conditions for polyphenol and gallic acid (both antioxidants) were investigated by response surface methodology. The content of polyphenols were determined under 16 different extraction conditions based upon a central composite design. The parameters varied over $30-70^{\circ}C$ of extraction temperature, 1-5 h of extraction time, and 5-25 mL/g of solvent ratio, Gallic acid extraction was optimal at $60-100^{\circ}C$ extraction temperature, 1-5 h of extraction time, and 5-25 mL/g of solvent ratio, Epicatechin content was highest at $56.77^{\circ}C$, 4.16 hand 22.38 mL/g. Catechin content was highest at $52.37^{\circ}C$, 2h and 23.59 mL/g. The maximum catechin content was $91.30{\mu}g/mL$. Epigallocatechin content was influenced by extraction temperature and time. The maximum epigallocatechin content was $1,066.56{\mu}g/mL$ at $61.42^{\circ}C$, 4.17h, and 9.25 mL/g. The maximum value of epicatechingallate content was $125.39{\mu}g/mL$ at $47.72^{\circ}C$, 3.04h, and 24.93mL/g. Epigallocatechingallate content was influenced principally by solvent ratio and the maximum content was $61.38{\mu}g/mL$ at $48.11^{\circ}C$, 2.96h, and 24.95mL/g. The total polyphenol content was maximal at $1,332.75{\mu}g/mL$, after extraction at $61.50^{\circ}C$, 4.24h, at 9.71mL/g. The higher the extraction temperature and the longer the extraction time, the greater the polyphenol content. Gallic acid content was highest, the maximal level was $30.51{\mu}g/mL$ after $65.84^{\circ}C$, 1.65h at 17.17 mL/g, and this was influenced principally by extraction time and solvent ratio.

Optimization of the Extraction of Bioactive Compounds from Chaga Mushroom (Inonotus obliquus) by the Response Surface Methodology (반응표면분석법을 이용한 차가버섯(Inonotus obliquus)의 생리활성물질 최적 추출조건 탐색)

  • Kim, Jaecheol;Yi, Haechang;Lee, Kiuk;Hwang, Keum Taek;Yoo, Gichun
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.233-239
    • /
    • 2015
  • This study determined the optimum extraction conditions based on five response variables (yield, total phenolics, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavanging activity, oxygen radical absorbance capacity (ORAC), and ${\beta}$-1,3-glucan content) in chaga mushroom (Inonotus obliquus) using the response surface methodology, where three independent variables (ethanol concentration, extraction temperature, and extraction time) were optimized using a central composite design. The optimum ethanol concentration, extraction temperature, and extraction time were 50% (w/w), $88.7^{\circ}C$, and 14.5 h; 9.2%, $92.7^{\circ}C$, and 14.5 h; 50.8%, $92.7^{\circ}C$, and 14.5 h; 9.2%, $92.7^{\circ}C$, and 1.5 h; and 90.8%, $92.7^{\circ}C$, and 1.5 h for yield, total phenolics, ABTS, ORAC, and ${\beta}$-1,3-glucan content, respectively. The predicted values of the response variables were compared with those of the extracts under the optimal extraction conditions to verify the models. The optimum extraction condition for the five response variables was predicted to be 81.4% ethanol at $92.7^{\circ}C$ for 14.5 h.

Photocatalytic Oxidation of Arsenite Using Goethite and UVC-Lamp (침철석과 UVC-Lamp를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.215-224
    • /
    • 2017
  • Arsenic (As) is known to be the most toxic element and frequently detected in groundwater environment. Inorganic As exists as arsenite [As(III)] and arsenate [As(V)] in reduced and oxidized environments, respectively. It has been reported that the toxicity of arsenite is much higher than that of arsenate and furthermore arsenite shows relatively higher mobility in aqueous environments. For this reason, there have been numerous researches on the process for oxidation of arsenite to arsenate to reduce the toxicity of arsenic. In particular, photooxidation has been considered to be simple, economical, and efficient to attain such goal. This study was conducted to evaluate the applicability of naturally-occurring goethite as a photocatalyst to substitute for $TiO_2$ which has been mostly used in the photooxidation processes so far. In addition, the effects of several factors on the overall performance of arsenite photocatalytic oxidation process were evaluated. The results show that the efficiency of the process was affected by total concentration of dissolved cations rather than by the kind of those cations and also the relatively higher pH conditions seemed to be more favorable to the process. In the case of coexistence of arsenite and arsenate, the removal tendency by adsorption onto goethite appeared to be different between arsenite and arsenate due to their different affinities with goethite, but any effect on the photocatalytic oxidation of arsenite was not observed. In terms of effect of humic acid on the process, it is likely that the higher concentration of humic acid reduced the overall performance of the arsenite photocatalytic oxidation as a result of competing interaction of activated oxygen species, such as hydroxyl and superoxide radicals, with arsenite and humic acid. In addition, it is revealed that the injection of oxygen gas improved the process because oxygen contributes to arsenite oxidation as an electron acceptor. Based on the results of the study, consequently, the photocatalytic oxidation of aqueous arsenite using goethite seems to be greatly feasible with the optimization of process.

The Performance Bottleneck of Subsequence Matching in Time-Series Databases: Observation, Solution, and Performance Evaluation (시계열 데이타베이스에서 서브시퀀스 매칭의 성능 병목 : 관찰, 해결 방안, 성능 평가)

  • 김상욱
    • Journal of KIISE:Databases
    • /
    • v.30 no.4
    • /
    • pp.381-396
    • /
    • 2003
  • Subsequence matching is an operation that finds subsequences whose changing patterns are similar to a given query sequence from time-series databases. This paper points out the performance bottleneck in subsequence matching, and then proposes an effective method that improves the performance of entire subsequence matching significantly by resolving the performance bottleneck. First, we analyze the disk access and CPU processing times required during the index searching and post processing steps through preliminary experiments. Based on their results, we show that the post processing step is the main performance bottleneck in subsequence matching, and them claim that its optimization is a crucial issue overlooked in previous approaches. In order to resolve the performance bottleneck, we propose a simple but quite effective method that processes the post processing step in the optimal way. By rearranging the order of candidate subsequences to be compared with a query sequence, our method completely eliminates the redundancy of disk accesses and CPU processing occurred in the post processing step. We formally prove that our method is optimal and also does not incur any false dismissal. We show the effectiveness of our method by extensive experiments. The results show that our method achieves significant speed-up in the post processing step 3.91 to 9.42 times when using a data set of real-world stock sequences and 4.97 to 5.61 times when using data sets of a large volume of synthetic sequences. Also, the results show that our method reduces the weight of the post processing step in entire subsequence matching from about 90% to less than 70%. This implies that our method successfully resolves th performance bottleneck in subsequence matching. As a result, our method provides excellent performance in entire subsequence matching. The experimental results reveal that it is 3.05 to 5.60 times faster when using a data set of real-world stock sequences and 3.68 to 4.21 times faster when using data sets of a large volume of synthetic sequences compared with the previous one.

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

Shielding Capability Evaluation of Mobile X-ray Generator through the Production assembled Shield (일체형 방어벽 제작을 통한 이동형 엑스선 발생기의 차폐능 평가)

  • Kim, Seung-Uk;Han, Byeoung-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.895-908
    • /
    • 2018
  • As modern science is developed and advanced, examination and number of times using radiation are increasing daily. General diagnostic X-ray generator is installed on stationary form, But X-ray generator was developed because patient who is in the intensive care unit, operation room, emergency room can not move to general x-ray room. What we examine patient by x-ray generator is certainly necessary, So patient exposure is inevitable. but reducing radiation exposure is highly important matter about radiation technology, guardian, patient in the same hospital room, nurse etc. For this reason, rule regarding safety control of diagnostic x-ray generator revised for radiation worker, patient and protector proclaim that mobile diagnostic x-ray shield must placed in case of examine different location excluding operation room, emergency room, intensive care unit. But, radiogical technologist is having a lot of difficulties to examine with mobile x-ray generator, diagnostic x-ray shield partition, image plate and lead apron. So, when we use x-ray generator, we manufacture shield tools can be attached to the mobile x-ray generator On behalf of x-ray shield partition and conduct analysis and in comparison to part of body and distribution of dose rate and find way to reduce radiation exposure through distribution of dose rate of patient within the radiogical technologist, medical team. Mobile x-ray generator aimed at SHIMADZU inc. R-20, We manufactured equipment for shielding x-ray scattered x-ray by installing shielding wall from side to side based on support beam on the mobile x-ray generator. Shielding wall when moving can be folded and designed to expand when examine. Experiment measured five times in each by an angle for dose rate of eyes, thyroid, breast, abdomen and gonad on exposure condition of upper and lower extremity, chest, abdomen which is examined many times by mobile x-ray generator. We used dosimeter RSM-100 made by IJRAD and measured a horizontal dose rate by body part. The result of an experiment, shielding decreasing rate of the front and the rear showed 77 ~ 98.7%. Therefore using self-production shielding wall reduce scattered x-ray occurrence rate and confirm can decrease exposure dose consequently. Therefore, through this study, reduction result which is used shielding wall of self-production will be a role of shielding optimization and it could be answer about reduction of medical exposure recommended by ICRP 103.