• Title/Summary/Keyword: optimization-based

Search Result 7,948, Processing Time 0.033 seconds

Optimal conditions for adventitious root organogenesis from peony root explant callus cultures (작약(Paeonia lactiflora Pall.) 뿌리절편 유래 캘러스 배양으로부터 부정근발생을 위한 최적 배양조건)

  • Lee, Young Jin;Choi, Myung Suk;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.207-212
    • /
    • 2022
  • The optimal culture conditions for root organogenesis from the callus of peonies (Paeonia lactiflora Pall.) were investigated. Root explants with vascular bundles were cultured in Murashige and Skoog (MS) medium combined with 0.5-4.0 mg/L auxins (indole acetic acid [IAA], naphthalene acetic acid [NAA], indolebutyric acid [IBA], and 2,4-dichlorophenoxyacetic acid [2,4-D]) and 0.0-2.0 mg/L cytokinins (kinetin, zeatin, and benzylaminopurine [BAP]) to induce callus formation. The callus was then cultured in MS medium combined with three concentrations (0.1, 0.5, and 1.0 mg/L) of IAA, NAA, IBA, kinetin, zeatin, and BAP in the dark for 6 weeks. Based on the results, the effects of dark and light conditions on the callus cultured in MS medium with combinations of 0.1-1.0 mg/L IBA and zeatin for 6 weeks were studied. Callus formation was most effective (>+++) in the medium with a combination of 1.0 mg/L NAA and 1.0 mg/L zeatin. A high number of long adventitious roots were observed in the mediums with 0.1 mg/L IBA (6.66 and 4.82 cm) and 0.5 mg/L zeatin (2.32 and 0.72 cm) among auxins and cytokinins, respectively. The highest number (14.06) of adventitious roots were formed from the callus cultured in light in the MS medium combined with 0.1 mg/L IBA and 0.5 mg/L zeatin. This same medium induced the formation of the longest adventitious root (5.45 cm) in the dark. Thus, optimization of in vitro culture conditions may be possible for the mass propagation of adventitious roots in peonies.

Optimization of Skim Milk Fermentation Conditions by Response Surface Methodology to Improve ACE Inhibitory Activity Using Lactiplantibacillus plantarum K79 (반응표면법에 의한 Lactiplantibacillus plantarumK79를 이용한 ACE(Angiotensin Converting Enzyme) 억제활성 향상을 위한 탈지유 발효조건 최적화)

  • Park, Yu-Kyoung;Hong, Sang-Pil;Lim, Sang-Dong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.93-102
    • /
    • 2022
  • This study was conducted using response surface methodology (RSM) to elucidate fermentation conditions that will optimize ACE inhibitory activity using Lactiplantibacillus plantarum K79. Four independent variables [skim milk (with 1% added glucose) concentration (6%-14%), incubation temperature (32℃-42℃), incubation time (8-24 h), and amount of added starter (0.02%-0.2%)] were evaluated using five-level central composite design and response surface methodology to determine the optimum fermentation condition. The dependent variables were angiotensin converting enzyme (ACE) inhibitory activity (the value obtained from 102 diluted supernatant), and pH. The respective coefficients of determinations (R2) were 0.791 and 0.905 for ACE inhibitory activity and pH. The maximum ACE inhibitory activity was 90% under the following conditions: 10% skim milk (with 1% added glucose) concentration, 37℃ incubation temperature, 17.8 h incubation time, and 0.2% added starter. Based on the RSM, using predicted best ACE conditions for fermentation of 13.49% skim milk (with 1% added glucose) with 0.0578% starter at 33.4℃ for 21.5 h, the predicted ACE inhibitory activity and pH values were 86.69% and 4.6, respectively. Actual ACE inhibitory activity and pH values were 85.5% and 4.58, respectively

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.

Characterization of Deep Learning-Based and Hybrid Iterative Reconstruction for Image Quality Optimization at Computer Tomography Angiography (전산화단층촬영조영술에서 화질 최적화를 위한 딥러닝 기반 및 하이브리드 반복 재구성의 특성분석)

  • Pil-Hyun, Jeon;Chang-Lae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • For optimal image quality of computer tomography angiography (CTA), different iodine concentrations and scan parameters were applied to quantitatively evaluate the image quality characteristics of filtered back projection (FBP), hybrid-iterative reconstruction (hybrid-IR), and deep learning reconstruction (DLR). A 320-row-detector CT scanner scanned a phantom with various iodine concentrations (1.2, 2.9, 4.9, 6.9, 10.4, 14.3, 18.4, and 25.9 mg/mL) located at the edge of a cylindrical water phantom with a diameter of 19 cm. Data obtained using each reconstruction technique was analyzed through noise, coefficient of variation (COV), and root mean square error (RMSE). As the iodine concentration increased, the CT number value increased, but the noise change did not show any special characteristics. COV decreased with increasing iodine concentration for FBP, adaptive iterative dose reduction (AIDR) 3D, and advanced intelligent clear-IQ engine (AiCE) at various tube voltages and tube currents. In addition, when the iodine concentration was low, there was a slight difference in COV between the reconstitution techniques, but there was little difference as the iodine concentration increased. AiCE showed the characteristic that RMSE decreased as the iodine concentration increased but rather increased after a specific concentration (4.9 mg/mL). Therefore, the user will have to consider the characteristics of scan parameters such as tube current and tube voltage as well as iodine concentration according to the reconstruction technique for optimal CTA image acquisition.

Heat transfer analysis in sub-channels of rod bundle geometry with supercritical water

  • Shitsi, Edward;Debrah, Seth Kofi;Chabi, Silas;Arthur, Emmanuel Maurice;Baidoo, Isaac Kwasi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.842-848
    • /
    • 2022
  • Parametric studies of heat transfer and fluid flow are very important research of interest because the design and operation of fluid flow and heat transfer systems are guided by these parametric studies. The safety of the system operation and system optimization can be determined by decreasing or increasing particular fluid flow and heat transfer parameter while keeping other parameters constant. The parameters that can be varied in order to determine safe and optimized system include system pressure, mass flow rate, heat flux and coolant inlet temperature among other parameters. The fluid flow and heat transfer systems can also be enhanced by the presence of or without the presence of particular effects including gravity effect among others. The advanced Generation IV reactors to be deployed for large electricity production, have proven to be more thermally efficient (approximately 45% thermal efficiency) than the current light water reactors with a thermal efficiency of approximately 33 ℃. SCWR is one of the Generation IV reactors intended for electricity generation. High Performance Light Water Reactor (HPLWR) is a SCWR type which is under consideration in this study. One-eighth of a proposed fuel assembly design for HPLWR consisting of 7 fuel/rod bundles with 9 coolant sub-channels was the geometry considered in this study to examine the effects of system pressure and mass flow rate on wall and fluid temperatures. Gravity effect on wall and fluid temperatures were also examined on this one-eighth fuel assembly geometry. Computational Fluid Dynamics (CFD) code, STAR-CCM+, was used to obtain the results of the numerical simulations. Based on the parametric analysis carried out, sub-channel 4 performed better in terms of heat transfer because temperatures predicted in sub-channel 9 (corner subchannel) were higher than the ones obtained in sub-channel 4 (central sub-channel). The influence of system mass flow rate, pressure and gravity seem similar in both sub-channels 4 and 9 with temperature distributions higher in sub-channel 9 than in sub-channel 4. In most of the cases considered, temperature distributions (for both fluid and wall) obtained at 25 MPa are higher than those obtained at 23 MPa, temperature distributions obtained at 601.2 kg/h are higher than those obtained at 561.2 kg/h, and temperature distributions obtained without gravity effect are higher than those obtained with gravity effect. The results show that effects of system pressure, mass flowrate and gravity on fluid flow and heat transfer are significant and therefore parametric studies need to be performed to determine safe and optimum operating conditions of fluid flow and heat transfer systems.

A Study on Global Blockchain Economy Ecosystem Classification and Intelligent Stock Portfolio Performance Analysis (글로벌 블록체인 경제 생태계 분류와 지능형 주식 포트폴리오 성과 분석)

  • Kim, Honggon;Ryu, Jongha;Shin, Woosik;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.209-235
    • /
    • 2022
  • Starting from 2010, blockchain technology, along with the development of artificial intelligence, has been in the spotlight as the latest technology to lead the 4th industrial revolution. Furthermore, previous research regarding blockchain's technological applications has been ongoing ever since. However, few studies have been examined the standards for classifying the blockchain economic ecosystem from a capital market perspective. Our study is classified into a collection of interviews of software developers, entrepreneurs, market participants and experts who use blockchain technology to utilize the blockchain economic ecosystem from a capital market perspective for investing in stocks, and case study methodologies of blockchain economic ecosystem according to application fields of blockchain technology. Additionally, as a way that can be used in connection with equity investment in the capital market, the blockchain economic ecosystem classification methodology was established to form an investment universe consisting of global blue-chip stocks. It also helped construct an intelligent portfolio through quantitative and qualitative analysis that are based on quant and artificial intelligence strategies and evaluate its performances. Lastly, it presented a successful investment strategy according to the growth of blockchain economic ecosystem. This study not only classifies and analyzes blockchain standardization as a blockchain economic ecosystem from a capital market, rather than a technical, point of view, but also constructs a portfolio that targets global blue-chip stocks while also developing strategies to achieve superior performances. This study provides insights that are fused with global equity investment from the perspectives of investment theory and the economy. Therefore, it has practical implications that can contribute to the development of capital markets.

Optimization of Protoplast Isolation and Ribonucleoprotein/Nanoparticle Complex Formation in Lentinula edodes (표고버섯의 원형질체 분리 최적화와 RNPs/나노파티클 복합체 형성)

  • Kim, Minseek;Ryu, Hojin;Oh, Min Ji;Im, Ji-Hoon;Lee, Jong-Won;Oh, Youn-Lee
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.178-182
    • /
    • 2022
  • Despite the long history of mushroom use, studies examining the genetic function of mushrooms and the development of new varieties via bio-molecular methods are significantly lacking compared to those examining other organisms. However, owing to recent developments, attempts have been made to use a novel gene-editing technique involving CRISPR/Cas9 technology and genetic scissors in mushroom studies. In particular, research is actively being conducted to utilize ribonucleoprotein particles (RNPs) that can be genetically edited with high efficiency without foreign gene insertion for ease of selection. However, RNPs are too large for Cas9 protein to pass through the cell membrane of the protoplasmic reticulum. Furthermore, guide RNA is unstable and can be easily decomposed, which remarkably affects gene editing efficiency. In this study, nanoparticles were used to mitigate the shortcomings of RNP-based gene editing techniques and to obtain transformants stably. We used Lentinula edodes (shiitake mushroom) Sanjo705-13 monokaryon strain, which has been successfully used in previous genome editing experiments. To identify a suitable osmotic buffer for the isolation of protoplast, 0.6 M and 1.2 M sucrose, mannitol, sorbitol, and KCl were treated, respectively. In addition, with various nanoparticle-forming materials, experiments were conducted to confirm genome editing efficiency via the formation of nanoparticles with calcium phosphate (CaP), which can be bound to Cas9 protein without any additional amino acid modification. RNPs/NP complex was successfully formed and protected nuclease activity with nucleotide sequence specificity.

A Study on Plasma Corrosion Resistance and Cleaning Process of Yttrium-based Materials using Atmospheric Plasma Spray Coating (Atmospheric Plasma Spray코팅을 이용한 Yttrium계 소재의 내플라즈마성 및 세정 공정에 관한 연구)

  • Kwon, Hyuksung;Kim, Minjoong;So, Jongho;Shin, Jae-Soo;Chung, Chin-Wook;Maeng, SeonJeong;Yun, Ju-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the plasma corrosion resistance and the change in the number of contamination particles generated using the plasma etching process and cleaning process of coating parts for semiconductor plasma etching equipment were investigated. As the coating method, atmospheric plasma spray (APS) was used, and the powder materials were Y2O3 and Y3Al5O12 (YAG). There was a clear difference in the densities of the coatings due to the difference in solubility due to the melting point of the powdered material. As a plasma environment, a mixed gas of CF4, O2, and Ar was used, and the etching process was performed at 200 W for 60 min. After the plasma etching process, a fluorinated film was formed on the surface, and it was confirmed that the plasma resistance was lowered and contaminant particles were generated. We performed a surface cleaning process using piranha solution(H2SO4(3):H2O2(1)) to remove the defect-causing surface fluorinated film. APS-Y2O3 and APS-YAG coatings commonly increased the number of defects (pores, cracks) on the coating surface by plasma etching and cleaning processes. As a result, it was confirmed that the generation of contamination particles increased and the breakdown voltage decreased. In particular, in the case of APS-YAG under the same cleaning process conditions, some of the fluorinated film remained and surface defects increased, which accelerated the increase in the number of contamination particles after cleaning. These results suggest that contaminating particles and the breakdown voltage that causes defects in semiconductor devices can be controlled through the optimization of the APS coating process and cleaning process.

Mobile App Analytics using Media Repertoire Approach (미디어 레퍼토리를 이용한 스마트폰 애플리케이션 이용 패턴 유형 분석)

  • Kwon, Sung Eun;Jang, Shu In;Hwangbo, Hyunwoo
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.4
    • /
    • pp.133-154
    • /
    • 2021
  • Today smart phone is the most common media with a vehicle called 'application'. In order to understand how media users select applications and build their repertoire, this study conducted two-step approach using big data from smart phone log for 4 weeks in November 2019, and finally classified 8 media repertoire groups. Each of the eight media repertoire groups showed differences in time spent of mobile application category compared to other groups, and also showed differences between groups in demographic distribution. In addition to the academic contribution of identifying the mobile application repertoire with large scale behavioral data, this study also has significance in proposing a two-step approach that overcomes 'outlier issue' in behavioral data by extracting prototype vectors using SOM (Sefl-Organized Map) and applying it to k-means clustering for optimization of the classification. The study is also meaningful in that it categorizes customers using e-commerce services, identifies customer structure based on behavioral data, and provides practical guides to e-commerce communities that execute appropriate services or marketing decisions for each customer group.

Low Power ADC Design for Mixed Signal Convolutional Neural Network Accelerator (혼성신호 컨볼루션 뉴럴 네트워크 가속기를 위한 저전력 ADC설계)

  • Lee, Jung Yeon;Asghar, Malik Summair;Arslan, Saad;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1627-1634
    • /
    • 2021
  • This paper introduces a low-power compact ADC circuit for analog Convolutional filter for low-power neural network accelerator SOC. While convolutional neural network accelerators can speed up the learning and inference process, they have drawback of consuming excessive power and occupying large chip area due to large number of multiply-and-accumulate operators when implemented in complex digital circuits. To overcome these drawbacks, we implemented an analog convolutional filter that consists of an analog multiply-and-accumulate arithmetic circuit along with an ADC. This paper is focused on the design optimization of a low-power 8bit SAR ADC for the analog convolutional filter accelerator We demonstrate how to minimize the capacitor-array DAC, an important component of SAR ADC, which is three times smaller than the conventional circuit. The proposed ADC has been fabricated in CMOS 65nm process. It achieves an overall size of 1355.7㎛2, power consumption of 2.6㎼ at a frequency of 100MHz, SNDR of 44.19 dB, and ENOB of 7.04bit.