• Title/Summary/Keyword: optimization scheme

Search Result 1,157, Processing Time 0.028 seconds

Prescriptive Analytics System Design Fusing Automatic Classification Method and Intellectual Structure Analysis Method (자동 분류 기법과 지적 구조 분석 기법을 융합한 처방적 분석 시스템 구현 방안 연구)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.33-57
    • /
    • 2017
  • This study aims to introduce an emerging prescriptive analytics method and suggest its efficient application to a category-based service system. Prescriptive analytics method provides the whole process of analysis and available alternatives as well as the results of analysis. To simulate the process of optimization, large scale journal articles have been collected and categorized by classification scheme. In the process of applying the concept of prescriptive analytics to a real system, we have fused a dynamic automatic-categorization method for large scale documents and intellectual structure analysis method for scholarly subject fields. The test result shows that some optimized scenarios can be generated efficiently and utilized effectively for reorganizing the classification-based service system.

Partial Bus-Invert Coding for System Level Power Optimization (부분 버스 반전 부호화를 이용한 시스템 수준 전력 최적화)

  • 신영수;채수익;최기영
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.23-30
    • /
    • 1998
  • We present a partial bus-invert coding scheme for system-level power optimization. In the proposed scheme, we select a sub-group of bus lines involved in bus encoding to avoid unnecessary inversion of bus lines not in the sub-group thereby reducing the total number of bus transitions. We propose a heuristic algorithm that selects the sub-group of bus lines for bus encoding. Experiments on benchmark examples indicate that the partial bus-invert coding reduces the total bus transitions by 62.6% on the average, compared to that of the unencoded patterns. We also compare the performance of the proposed heuristic algorithm with that of simulated annealing, which shows that it is highly efficient.

  • PDF

A Fast Intra Skip Detection Algorithm for H.264/AVC Video Encoding

  • Kim, Byung-Gyu;Kim, Jong-Ho;Cho, Chang-Sik
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.721-731
    • /
    • 2006
  • A fast intra skip detection algorithm based on the ratedistortion (RD) cost for an inter frame (P-slices) is proposed for H.264/AVC video encoding. In the H.264/AVC coding standard, a robust rate-distortion optimization technique is used to select the best coding mode and reference frame for each macroblock (MB). There are three types of intra predictions according to profiles. These are $16{\times}16$ and $4{\times}4$ intra predictions for luminance and an $8{\times}8$ intra prediction for chroma. For the high profile, an $8{\times}8$ intra prediction has been added for luminance. The $4{\times}4$ prediction mode has 9 prediction directions with 4 directions for $16{\times}16$ and $8{\times}8$ luma, and $8{\times}8$ chrominance. In addition to the inter mode search procedure, an intra mode search causes a significant increase in the complexity and computational load for an inter frame. To reduce the computational load of the intra mode search at the inter frame, the RD costs of the neighborhood MBs for the current MB are used and we propose an adaptive thresholding scheme for the intra skip extraction. We verified the performance of the proposed scheme through comparative analysis of experimental results using joint model reference software. The overall encoding time was reduced up to 32% for the IPPP sequence type and 35% for the IBBPBBP sequence type.

  • PDF

Multibeam Reflector Antenna for Ka-Band Communication Satellite (Ka 대역 통신위성용 다중 빔 배열 급전 반사판 안테나)

  • Yun, So-Hyeun;Uhm, Man-Seok;Choi, Jang-Sup;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.756-759
    • /
    • 2012
  • This paper presents the multibeam service coverage of GEO(Geostationary Orbit) satellite and the practical antenna scheme scenarios to provide the universal communication services on the Korean peninsula. The proposed antenna systems consist of the simplest scheme and feed network so that they can be mounted on satellites. The feed networks are effectively organized according to the frequency and polarization plan. Despite simple structure, all scenarios meet the electrical performance by the optimization of feed allocation and feed excitation.

Contract Theory Based Cooperative Spectrum Sharing with Joint Power and Bandwidth Optimization

  • Lu, Weidang;He, Chenxin;Lin, Yuanrong;Peng, Hong;Liu, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5803-5819
    • /
    • 2017
  • In this paper, we proposed a contract theory based cooperative spectrum sharing scheme with joint power and bandwidth optimization under asymmetric information, where the primary user (PU) does not know the secondary users' (SUs) private information. To improve performance, PU needs to provide incentives to stimulate nearby SUs to help forward its signal. By using contract theory, PU and SUs' negotiations are modeled as a labor market. PU and SUs act as the employer and employees, respectively. Specifically, SUs provide labor (i.e. the relay power, which can be used for forwarding PU's signal) in exchange for the reward (i.e. the spectrum access bandwidth which can be used for transmitting their own signals). PU needs to overcome a challenge how to balance the relationship between contributions and incentives for the SUs. We study the optimal contract design which consists of relay power and spectrum access bandwidth allocation. We show that the most efficient SUs will be hired by the PU to attend the cooperative communication. PU can achieve the same maximum utility as in the symmetric information scenario. Simulation results confirm that the utility of PU is significantly enhanced with our proposed cooperative spectrum sharing scheme.

Abdominal-Deformation Measurement for a Shape-Flexible Mannequin Using the 3D Digital Image Correlation

  • Liu, Huan;Hao, Kuangrong;Ding, Yongsheng
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.79-91
    • /
    • 2017
  • In this paper, the abdominal-deformation measurement scheme is conducted on a shape-flexible mannequin using the DIC technique in a stereo-vision system. Firstly, during the integer-pixel displacement search, a novel fractal dimension based on an adaptive-ellipse subset area is developed to track an integer pixel between the reference and deformed images. Secondly, at the subpixel registration, a new mutual-learning adaptive particle swarm optimization (MLADPSO) algorithm is employed to locate the subpixel precisely. Dynamic adjustments of the particle flight velocities that are according to the deformation extent of each interest point are utilized for enhancing the accuracy of the subpixel registration. A test is performed on the abdominal-deformation measurement of the shape-flexible mannequin. The experiment results indicate that under the guarantee of its measurement accuracy without the cause of any loss, the time-consumption of the proposed scheme is significantly more efficient than that of the conventional method, particularly in the case of a large number of interest points.

Joint Mode Selection, Link Allocation and Power Control in Underlaying D2D Communication

  • Zhang, Wei;He, Wanbing;Wu, Dan;Cai, Yueming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5209-5228
    • /
    • 2016
  • Device-to-device (D2D) communication underlaying cellular networks can bring significate benefits for improving the performance of mobile services. However, it hinges on elaborate resource sharing scheme to coordinate interference between cellular users and D2D pairs. We formulate a joint mode selection, link allocation and power control optimization problem for D2D communication sharing uplink resources in a multi-user cellular network and consider the efficiency and the fairness simultaneously. Due to the non-convex difficulty, we propose a three-step scheme: firstly, we conduct mode selection for D2D pairs based on a minimum distance metric after an admission control and obtain some cellular candidates for them. And then, a cellular candidate will be paired to each D2D pair based on fairness. Finally, we use Lagrangian Algorithm to formulate a joint power control strategy for D2D pairs and their reused cellular users and a closed-form of solution is derived. Simulation results demonstrate that our proposed algorithms converge in a short time. Moreover, both the sum rate of D2D pairs and the energy efficiency of cellular users are improved.

Relaying Protocols and Delay Analysis for Buffer-aided Wireless Powered Cooperative Communication Networks

  • Zhan, Jun;Tang, Xiaohu;Chen, Qingchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3542-3566
    • /
    • 2018
  • In this paper, we investigate a buffer-aided wireless powered cooperative communication network (WPCCN), in which the source and relay harvest the energy from a dedicated power beacon via wireless energy transfer, then the source transmits the data to the destination through the relay. Both the source and relay are equipped with an energy buffer to store the harvested energy in the energy transfer stage. In addition, the relay is equipped with a data buffer and can temporarily store the received information. Considering the buffer-aided WPCCN, we propose two buffer-aided relaying protocols, which named as the buffer-aided harvest-then-transmit (HtT) protocol and the buffer-aided joint mode selection and power allocation (JMSPA) protocol, respectively. For the buffer-aided HtT protocol, the time-averaged achievable rate is obtained in closed form. For the buffer-aided JMSPA protocol, the optimal adaptive mode selection scheme and power allocation scheme, which jointly maximize the time-averaged throughput of system, are obtained by employing the Lyapunov optimization theory. Furthermore, we drive the theoretical bounds on the time-averaged achievable rate and time-averaged delay, then present the throughput-delay tradeoff achieved by the joint JMSPA protocol. Simulation results validate the throughput performance gain of the proposed buffer-aided relaying protocols and verify the theoretical analysis.

Energy-aware Transmission Power Control for Solar Energy Harvesting Wireless sensor system and Its Effects on Network-wide Performance (태양 에너지 기반 센서 네트워크를 위한 에너지 적응형 전송파워 조절과 그에 따른 네트워크 성능 분석)

  • Kang, Minjae;Kim, Jaeung;Yang, Heejung;Noh, Dong Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.750-753
    • /
    • 2013
  • In respect of consuming energy, the optimization is the main objective in the solar energy harvesting sensor system (while battery-based sensor system aims at the minimization), due to the periodicity of solar energy. Aimed at the optimization of the network topology, we suggest 3-level transmission power control algorithm of which level is determined by the amount of residual energy on the rechargeable battery. Additionally, we experiment the effects of our scheme on network-wide performance such as the latency and the duty-cycle, and verify that our scheme shows the best performance in most of the metrics, compared to the schemes with fixed transmission power.

  • PDF

Spectrum Sharing-Based Multi-Hop Decode-and-Forward Relay Networks under Interference Constraints: Performance Analysis and Relay Position Optimization

  • Bao, Vo Nguyen Quoc;Thanh, Tran Thien;Nguyen, Tuan Duc;Vu, Thanh Dinh
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.266-275
    • /
    • 2013
  • The exact closed-form expressions for outage probability and bit error rate of spectrum sharing-based multi-hop decode-and-forward (DF) relay networks in non-identical Rayleigh fading channels are derived. We also provide the approximate closed-form expression for the system ergodic capacity. Utilizing these tractable analytical formulas, we can study the impact of key network parameters on the performance of cognitive multi-hop relay networks under interference constraints. Using a linear network model, we derive an optimum relay position scheme by numerically solving an optimization problem of balancing average signal-to-noise ratio (SNR) of each hop. The numerical results show that the optimal scheme leads to SNR performance gains of more than 1 dB. All the analytical expressions are verified by Monte-Carlo simulations confirming the advantage of multihop DF relaying networks in cognitive environments.