• Title/Summary/Keyword: optimization scheme

Search Result 1,157, Processing Time 0.024 seconds

Acceleration of Simulated Annealing and Its Application for Virtual Path Management in ATM Networks (Simulated Annealing의 가속화와 ATM 망에서의 가상경로 설정에의 적용)

  • 윤복식;조계연
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.2
    • /
    • pp.125-140
    • /
    • 1996
  • Simulated annealing (SA) is a very promising general purpose algorithm which can be conveniently utilized for various complicated combinatorial optimization problems. But its slowness has been pointed as a major drawback. In this paper, we propose an accelerated SA and test its performance experimentally by applying it for two standard combinatorial optimization problems (TSP(Travelling Salesman Problem) and GPP(Graph Partitioning Problem) of various sizes. It turns out that performance of the proposed method is consistently better both in convergenge speed and the quality of solution than the conventional SA or SE (Stochastic Evolution). In the second part of the paper we apply the accelerated SA to solve the virtual path management problem encountered in ATM netowrks. The problem is modeled as a combinatorial optimization problem to optimize the utilizy of links and an efficient SA implementation scheme is proposed. Two application examples are given to demonstrate the validity of the proposed algorithm.

  • PDF

Space Optimization for Warehousing Problem: A Methodology for Decision Support System

  • Murthy, A.L.N.
    • Management Science and Financial Engineering
    • /
    • v.18 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • This article presents a way of tackling a special class of space optimization problems that arise in a number of practical applications in industry and elsewhere. It presents an elegant solution to a problem that was considered by (Das, 2005) in optimizing storage space in warehouse of a footwear manufacturing company. In (Das, 2005), the problem was formulated as a nonlinear programming problem. In this article, it is shown that the problem can be formulated as a generalized transportation problem which is a special case of generalized network flow problems. Further, an elegant scheme is devised to handle the dynamic situation of warehousing problem which can be easily translated into a decision support system for the warehouse management system. Also, the article points out certain obscurities and gaps in (Das, 2005).

Design Guideline for Press Tool Structure of Ultra-high Strength Steel Part with Shape Optimization Technique (형상최적화 기법을 이용한 초고강도강판 성형용 프레스 금형의 구조설계 가이드라인)

  • Kang, K.H.;Kwak, J.H.;Bae, S.B.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.372-377
    • /
    • 2017
  • In this paper, an effective design procedure was proposed to design the rib of die structure for auto-body member with ultra-high strength steel (UHSS) having ultimate tensile strength (UTS) of 1.5 GPa. From analysis results of the die structure, structural safety of the die was evaluated with information such as displacement and von-Mises stress. It was concluded that the casting part could be designed in order to reduce tool deformation. A design guideline of the die structure was proposed, especially for the rib structure in the casting part with an optimization scheme and local reinforcement concept. Simulation result following the design guideline fully explained that stability of the tool structure could be obtained simultaneously with weight minimization.

Optimal Bandwidth Assignment for Packet Rings

  • Hua, Cunqing;Yum, Tak-Shing Peter;Li, Cheng
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.402-407
    • /
    • 2007
  • The network throughput is an important performance criteria for the packet ring networks. Since maximizing the network throughput can lead to severe bias in bandwidth allocation among all flows, fairness should be imposed to prevent bandwidth starvation. The challenge here, therefore, is the joint optimization of the network throughput and fairness. In this paper, we present the optimal bandwidth assignment scheme to decompose this optimization problem into two tasks, one for finding fair bandwidth assignment and the other for finding the optimal routing. The network throughput is maximized under the fairness constraints when these tasks are performed iteratively.

A Robust Joint Optimal Pricing and Lot-Sizing Model

  • Lim, Sungmook
    • Management Science and Financial Engineering
    • /
    • v.18 no.2
    • /
    • pp.23-27
    • /
    • 2012
  • The problem of jointly determining a robust optimal bundle of price and order quantity for a retailer in a single-retailer, single supplier, single-product supply chain is considered. Demand is modeled as a decreasing power function of product price, and unit purchasing cost is modeled as a decreasing power function of order quantity and demand. Parameters defining the two power functions are uncertain but their possible values are characterized by ellipsoids. We extend a previous study in two ways; the purchasing cost function is generalized to take into account the economies of scale realized by higher product demand in addition to larger order quantity, and an exact transformation into an equivalent convex optimization program is developed instead of a geometric programming approximation scheme proposed in the previous study.

Designing New Algorithms Using Genetic Programming

  • Kim, Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.171-178
    • /
    • 2004
  • This study suggests a general paradigm enhancing genetic mutability. Mutability among heterogeneous members in a genetic population has been a major problem in application of genetic programming to diverse business problems. This suggested paradigm is implemented to developing new methods from existing methods. Within the evolutionary approach taken to designing new methods, a general representation scheme of the genetic programming framework, called a kernel, is introduced. The kernel is derived from the literature of algorithms and heuristics for combinatorial optimization problems. The commonality and differences among these methods have been identified and again combined by following the genetic inheritance merging them. The kernel was tested for selected methods in combinatorial optimization. It not only duplicates the methods in the literature, it also confirms that each of the possible solutions from the genetic mutation is in a valid form, a running program. This evolutionary method suggests diverse hybrid methods in the form of complete programs through evolutionary processes. It finally summarizes its findings from genetic simulation with insight.

  • PDF

Design of Optimized Fuzzy Cascade controller Based on Partical Swarm Optimization for Ball & Beam System (볼빔 시스템에 대한 입자 군집 최적화를 이용한 최적 퍼지 직렬형 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2322-2329
    • /
    • 2008
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of particle swarm optimization(PSO) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling facrors) of each fuzzy controller using PSO. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on PSO, is presented in comparison with the conventional PD cascade controller based on serial genetic alogritms.

Speed Control of Linear Induction Motor using Sliding Mode Controller Considering the End Effects

  • Boucheta, A.;Bousserhane, I.K.;Hazzab, A.;Sicard, P.;Fellah, M.K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.34-45
    • /
    • 2012
  • In the present paper, the mover speed control of a linear induction motor (LIM) using a sliding mode control design is proposed, considering the end effects. First, the indirect field-oriented control LIM is derived, considering the end effects. The sliding mode control design is then investigated to achieve speed- and flux-tracking under load thrust force disturbance. The numerical simulation results of the proposed scheme present good performances in comparison to that of the classical sliding mode control.

Structural Design Optimization using Distributed Structural Analysis (분산구조해석을 이용한 구조설계최적화)

  • 박종희;정진덕;전한규;황진하
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.124-132
    • /
    • 2000
  • Distributed processing approach for structural optimization is presented in this study. It is implemented on network of personal computers. The validity and efficiency of this approach are demonstrated and verified by test model of truss. Repeated structural analysis algorithm, which spend a lot of overall structural optimization processes, are based on substructuring scheme with domain-wise parallelism and converted to be adapted to hardware and software environments. The design information data are modularized and assigned to each computer in order to minize the communication cost. The communications between nodes are limited to static condensation and constraint-related data collection.

  • PDF

Shape Optimization of Shell Surfaces Based on Linkage Framework between B-spline Modeling and Finite Element Analysis (유한요소해석과 B-스플라인 모델링의 연동에 기초한 쉘 곡면의 형상 최적 설계)

  • 김현철;노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.169-176
    • /
    • 2003
  • In the present study, a shape design optimization scheme in shell structures is implemented based on the integrated framework of geometric modeling and analysis. The common representation of B-spline surface patch is used for geometric modeling. A geometrically-exact shell finite element is implemented. Control points or the surface are employed as design variables. In the computation of shape sensitivity, semi-analytical method is employed. Sequential linear programming is applied to the shape optimization of surfaces. The developed integrated framework should serve as a powerful tool to design and analysis of surfaces.

  • PDF