• Title/Summary/Keyword: optimization problem

Search Result 4,342, Processing Time 0.031 seconds

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

A Study on the Optimal Location Selection for Hydrogen Refueling Stations on a Highway using Machine Learning (머신러닝 기반 고속도로 내 수소충전소 최적입지 선정 연구)

  • Jo, Jae-Hyeok;Kim, Sungsu
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.83-106
    • /
    • 2021
  • Interests in clean fuels have been soaring because of environmental problems such as air pollution and global warming. Unlike fossil fuels, hydrogen obtains public attention as a eco-friendly energy source because it releases only water when burned. Various policy efforts have been made to establish a hydrogen based transportation network. The station that supplies hydrogen to hydrogen-powered trucks is essential for building the hydrogen based logistics system. Thus, determining the optimal location of refueling stations is an important topic in the network. Although previous studies have mostly applied optimization based methodologies, this paper adopts machine learning to review spatial attributes of candidate locations in selecting the optimal position of the refueling stations. Machine learning shows outstanding performance in various fields. However, it has not yet applied to an optimal location selection problem of hydrogen refueling stations. Therefore, several machine learning models are applied and compared in performance by setting variables relevant to the location of highway rest areas and random points on a highway. The results show that Random Forest model is superior in terms of F1-score. We believe that this work can be a starting point to utilize machine learning based methods as the preliminary review for the optimal sites of the stations before the optimization applies.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

A Study on the Optimization of Fire Awareness Model Based on Convolutional Neural Network: Layer Importance Evaluation-Based Approach (합성곱 신경망 기반 화재 인식 모델 최적화 연구: Layer Importance Evaluation 기반 접근법)

  • Won Jin;Mi-Hwa Song
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.444-452
    • /
    • 2024
  • This study proposes a deep learning architecture optimized for fire detection derived through Layer Importance Evaluation. In order to solve the problem of unnecessary complexity and operation of the existing Convolutional Neural Network (CNN)-based fire detection system, the operation of the inner layer of the model based on the weight and activation values was analyzed through the Layer Importance Evaluation technique, the layer with a high contribution to fire detection was identified, and the model was reconstructed only with the identified layer, and the performance indicators were compared and analyzed with the existing model. After learning the fire data using four transfer learning models: Xception, VGG19, ResNet, and EfficientNetB5, the Layer Importance Evaluation technique was applied to analyze the weight and activation value of each layer, and then a new model was constructed by selecting the top rank layers with the highest contribution. As a result of the study, it was confirmed that the implemented architecture maintains the same performance with parameters that are about 80% lighter than the existing model, and can contribute to increasing the efficiency of fire monitoring equipment by outputting the same performance in accuracy, loss, and confusion matrix indicators compared to conventional complex transfer learning models while having a learning speed of about 3 to 5 times faster.

HW/SW Partitioning Techniques for Multi-Mode Multi-Task Embedded Applications (멀티모드 멀티태스크 임베디드 어플리케이션을 위한 HW/SW 분할 기법)

  • Kim, Young-Jun;Kim, Tae-Whan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.8
    • /
    • pp.337-347
    • /
    • 2007
  • An embedded system is called a multi-mode embedded system if it performs multiple applications by dynamically reconfiguring the system functionality. Further, the embedded system is called a multi-mode multi-task embedded system if it additionally supports multiple tasks to be executed in a mode. In this Paper, we address a HW/SW partitioning problem, that is, HW/SW partitioning of multi-mode multi-task embedded applications with timing constraints of tasks. The objective of the optimization problem is to find a minimal total system cost of allocation/mapping of processing resources to functional modules in tasks together with a schedule that satisfies the timing constraints. The key success of solving the problem is closely related to the degree of the amount of utilization of the potential parallelism among the executions of modules. However, due to an inherently excessively large search space of the parallelism, and to make the task of schedulabilty analysis easy, the prior HW/SW partitioning methods have not been able to fully exploit the potential parallel execution of modules. To overcome the limitation, we propose a set of comprehensive HW/SW partitioning techniques which solve the three subproblems of the partitioning problem simultaneously: (1) allocation of processing resources, (2) mapping the processing resources to the modules in tasks, and (3) determining an execution schedule of modules. Specifically, based on a precise measurement on the parallel execution and schedulability of modules, we develop a stepwise refinement partitioning technique for single-mode multi-task applications. The proposed techniques is then extended to solve the HW/SW partitioning problem of multi-mode multi-task applications. From experiments with a set of real-life applications, it is shown that the proposed techniques are able to reduce the implementation cost by 19.0% and 17.0% for single- and multi-mode multi-task applications over that by the conventional method, respectively.

MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information (지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형)

  • Jinho Son;Suhwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • In the wartime, aircraft carrying out a mission to strike the enemy deep in the depth are exposed to the risk of being shoot down. As a key combat force in mordern warfare, it takes a lot of time, effot and national budget to train military flight personnel who operate high-tech weapon systems. Therefore, this study studied the path problem of predicting the route of emergency escape from enemy territory to the target point to avoid obstacles, and through this, the possibility of safe recovery of emergency escape military flight personnel was increased. based problem, transforming the problem into a TSP, VRP, and Dijkstra algorithm, and approaching it with an optimization technique. However, if this problem is approached in a network problem, it is difficult to reflect the dynamic factors and uncertainties of the battlefield environment that military flight personnel in distress will face. So, MDP suitable for modeling dynamic environments was applied and studied. In addition, GIS was used to obtain topographic information data, and in the process of designing the reward structure of MDP, topographic information was reflected in more detail so that the model could be more realistic than previous studies. In this study, value iteration algorithms and deterministic methods were used to derive a path that allows the military flight personnel in distress to move to the shortest distance while making the most of the topographical advantages. In addition, it was intended to add the reality of the model by adding actual topographic information and obstacles that the military flight personnel in distress can meet in the process of escape and escape. Through this, it was possible to predict through which route the military flight personnel would escape and escape in the actual situation. The model presented in this study can be applied to various operational situations through redesign of the reward structure. In actual situations, decision support based on scientific techniques that reflect various factors in predicting the escape route of the military flight personnel in distress and conducting combat search and rescue operations will be possible.

Application of Ant System Algorithm on Parcels Delivery Service in Korea (국내택배시스템에 개미시스템 알고리즘의 적용가능성 검토)

  • Jo, Wan-Kyung;Rhee, Jong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.81-91
    • /
    • 2005
  • The Traveling Salesman Problem(TSP) is one of the NP-complete (None-deterministic Polynomial time complete) route optimization problems. Its calculation time increases very rapidly as the number of nodes does. Therefore, the near optimum solution has been searched by heuristic algorithms rather than the real optimum has. This paper reviews the Ant System Algorithm(ANS), an heuristic algorithm of TSP and its applicability in the parcel delivery service in Korea. ASA, which is an heuristic algorithm of NP-complete has been studied by M. Dorigo in the early 1990. ASA finds the optimum route by the probabilistic method based on the cumulated pheromone on the links by ants. ASA has been known as one of the efficient heuristic algorithms in terms of its calculation time and result. Its applications have been expanded to vehicle routing problems, network management and highway alignment planning. The precise criteria for vehicle routing has not been set up in the parcel delivery service of Korea. Vehicle routing has been determined by the vehicle deriver himself or herself. In this paper the applicability of ASA to the parcel delivery service has been reviewed. When the driver s vehicle routing is assumed to follow the Nearest Neighbor Algorithm (NNA) with 20 nodes (pick-up and drop-off places) in $10Km{\times}10Km$ service area, his or her decision was compared with ASA's one. Also, ASA showed better results than NNA as the number of nodes increases from 10 to 200. If ASA is applied, the transport cost savings could be expected in the parcel delivery service in Korea.

Depth Upsampling Method Using Total Generalized Variation (일반적 총변이를 이용한 깊이맵 업샘플링 방법)

  • Hong, Su-Min;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.957-964
    • /
    • 2016
  • Acquisition of reliable depth maps is a critical requirement in many applications such as 3D videos and free-viewpoint TV. Depth information can be obtained from the object directly using physical sensors, such as infrared ray (IR) sensors. Recently, Time-of-Flight (ToF) range camera including KINECT depth camera became popular alternatives for dense depth sensing. Although ToF cameras can capture depth information for object in real time, but are noisy and subject to low resolutions. Recently, filter-based depth up-sampling algorithms such as joint bilateral upsampling (JBU) and noise-aware filter for depth up-sampling (NAFDU) have been proposed to get high quality depth information. However, these methods often lead to texture copying in the upsampled depth map. To overcome this limitation, we formulate a convex optimization problem using higher order regularization for depth map upsampling. We decrease the texture copying problem of the upsampled depth map by using edge weighting term that chosen by the edge information. Experimental results have shown that our scheme produced more reliable depth maps compared with previous methods.

Wear Problem Improvement Manufacture Technology of Ignitor Tip Component Using 3D Printing Technology (발전소 점화자 팁 부품의 마모 문제 해결을 위한 3D 프린팅 기술을 이용한 부품 제조기술개발)

  • Lee, Hye-Jin;Yeon, Simo;Son, Yong;Lee, Nak-Kyu
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.35-40
    • /
    • 2016
  • Ignitor tip is a component of burner to start the burning process in power plant. This is used to ignite the coal to a constant operating state by fuel mixed with air and kerosene. This component is composed of three components so that air and kerosene are mixed in the proper ratio and injected uniformly. Because the parts with the designed shape are manufactured in the machining process, they have to be made of three parts. These parts are designed to have various functions in each part. The mixing part mixes the supplied air and kerosene through the six holes and sends it to the injecting part at the proper ratio. The inject part injects mixed fuel, which is led to have a constant rotational direction in the connecting part, to the burner. And the connecting plate that the mixed fuel could rotate and spray is assembled so that the flame can be injected uniformly. But this part causes problems that are worn by vibration and rotation because it is mechanically assembled between the mixing part and the inject part. In this study, 3D printing method is used to integrate a connecting plate and an inject part to solve this wear problem. The 3D printing method could make this integrated part because the process is carried out layer by layer using a metal powder material. The part manufactured by 3D printing process should perform the post process such as support removal and surface treatment. However, while performing the 3D printing process, the material properties of the metal powders are changed by the laser sintering process. This change in material properties makes the post process difficult. In consideration of these variables, we have studied the optimization of manufacturing process using 3D printing method.

GA-Based Optimal Design for Vibration Control of Adjacent Structures with Linear Viscous Damping System (선형 점성 감쇠기가 장착된 인접구조물의 진동제어를 위한 유전자 알고리즘 기반 최적설계)

  • Ok, Seung-Yong;Kim, Dong-Seok;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.11-19
    • /
    • 2007
  • This paper proposes an optimal design method of distribution and capacities of linear viscous dampers for vibration control of two adjacent buildings. The previous researches have dealt with suboptimal design problem under the assumption that linear viscous dampers are distributed uniformly or proportionally to the sensitivity of the modal damping ratio according to floors, whereas this study deals with global optimization problem in which the damping capacities of each floor are independently selected as design parameters. For this purpose, genetic algorithm to effectively search multiple design variables in large searching domains is adopted and objective function leading to the global optimal solutions is established through the comparison of several optimal design values obtained from different objective functions with control performance and damping capacity. The effectiveness of the proposed method is investigated by comparing the control performance and total damping capacity designed by the proposed method with those of the previous method. In addition, the time history analyses are performed by using three historical earthquakes with different frequency contents, and the simulation results demonstrate that the proposed method is an effective seismic design method for the vibration control of the adjacent structures.