• Title/Summary/Keyword: optimization of roasting conditions

Search Result 15, Processing Time 0.025 seconds

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

Optimization of Extraction Process Conditions of Aga Soybean Using Response Surface methodology (반응표면분석을 이용한 아가콩의 추출조건 최적화)

  • Lee, Jin-Man;La, Im-Joung;Lee, Do-Sang;Kim, Hwa-Jung;Kim, Young-Il;Lee, Hyung-min;Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1699-1708
    • /
    • 2021
  • Response surface methodology was applied to determine the optimum extract conditions(extract temperature and time) for the high-quality Agakong beverage. The optimal roasting condition for Agakong was set at 250 ℃ for 30 minutes. As quality criteria of Agakong, pH, color values and isofavone contents with extract temperature and extract time, the probability value (p<0.01) demonstrated a high significance for the regression model. It was found that the higher the extraction temperature and the longer the extraction time, the higher the isoflavones content. The optimized conditions of extraction isoflavones from agakong were found to be optimized ratio of extraction temperature 99.5℃, extraction time 1.7 h and the maximum rutin yield was 10.63 ㎍/mL.

Optimization on Pretreatment and Granule Tea Recipe of Polygonatum sibiricum Delar (둥굴레의 전처리 및 과립차 배합비 최적화)

  • 이기동
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.148-153
    • /
    • 2004
  • The organoleptic properties of granule tea was optimized for granulation of Polygonatum sibiricum Delar(Dunggulle) tea for exclusion of scorched smell and increase of consumption. The length of 2 mm was suitable to cutting size of Dunggulle for preparation of the roasted Dunggulle. The optimum sensory conditions for aroma of Dunggulle granule tea showing 7.85 organoleptic score were 80.61% in ratio of Dunggulle extracts to total extracts, 12.77% in content of total extracts and 37.33% in rate of glucose to total sugar. The highest score of overall palatability was 5.96 at 61.11% in rate of Dunggulle extracts to total extracts, 13.79% in content of total extracts, and 60.92% in rate of glucose to total sugar.

Processing Optimization of Seasoned Laver Pyropia yezoensis Using Seasoning Sauce with Conger Eel Conger myriaster (붕장어(Conger myriaster) 시즈닝을 활용한 조미김(Pyropia yezoensis)의 제조공정 최적화)

  • Kim, Do Youb;Kang, Sang In;Lee, Chang Young;Kim, Hye Jin;Lee, Jung Suck;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.368-381
    • /
    • 2020
  • This study was conducted to optimize the processing conditions of seasoned laver Pyropia yezoensis with conger eel Conger myriaster seasoning sauce (CES) using response surface methodology (RSM). The RSM program results for bonesoftness showed that the optimum independent variables based on the dependent variables (Y1, lipid removal rate; Y2, texture; and Y3, sensory fish odor score) were 431.0% for X1 (water amount), 115.6℃ for X2 (retort-operated temperature), and 50.1 min for X3 (retort-operated time). The RSM program results for the CES blend showed that the optimum independent variables (X1, amount of bone-softened conger eel by-products; X2, mixed sauce amount; and X3, starch amount) based on the dependent variables (Y1, amino-N; Y2, Hunter redness; and Y3, drying time) were 44.8% for A (pre-treated conger eel by-product), 36.0% for B (mixed sauce), and 19.2% for C (starch). The RSM program results for seasoned laver with CES showed that the optimum independent variables based on the dependent variables (Y1, water activity; Y2, Hunter yellowness; and Y3, overall acceptance) were 5.0% for X1, (CES amount), 313.8℃ for X2 (roasting temperature), and 6.0 s for X3 (roasting time). The seasoned laver with CES prepared under the optimum conditions was superior to commercial seasoned laver in terms of overall acceptance.

Processing Optimization of Seasoned Laver Pyropia yezoensis with Concentrates of Octopus Octopus vulgaris Cooking Effluent Using Response Surface Methodology (반응표면분석법을 활용한 문어(Octopus vulgaris) 조미김(Pyropia yezoensis)의 제조공정 최적화)

  • Kim, Do Youb;Kang, Sang In;Jeong, U-Cheol;Lee, Jung Seok;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.4
    • /
    • pp.311-320
    • /
    • 2019
  • This study aimed to optimize mixing conditions (adding amount of squid skin and sea tangle Saccharina japonica) for concentrates of octopus Octopus vulgaris cooking effluent (COCE) and roasting conditions (temperature and time) of seasoned Laver Pyropia yezoensis with concentrates of octopus cooking effluent (SL-COCE) using response surface methodology (RSM). The results of RSM program for COCE showed that the optimum independent variables ($X_1$, squid skin amount; $X_2$, sea tangle amount) based on the dependent variables ($Y_1$, odor intensity; $Y_2$, amino-N content; $Y_3$, sensory overall acceptance) for high-quality COCE were 0.53% (w/w) for $X_1$ and 0.48% (w/w) for $X_2$ for uncoded values. The results of the RSM program for SL-COCE showed that the optimum independent variables ($X_1$, roasted temp.; $X_2$, roasted time) based on the dependent variables ($Y_1$, burnt odor intensity; $Y_2$, water activity; $Y_3$, sensory overall acceptance) for high-quality SL-COCE were $344^{\circ}C$ for $X_1$ and 8 sec for $X_2$ for uncoded values. The SL-COCE prepared under optimum procedure was superior in sensory overall acceptance to commercial seasoned laver.