• Title/Summary/Keyword: optimization of culture conditions

Search Result 313, Processing Time 0.025 seconds

Optimization of Culture Media for Solid-state Culture of Pleurotus ferulae

  • Cha Wol-Suk;Choi DuBok;Kang Si-Hyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.369-373
    • /
    • 2004
  • In order to elucidate the possibility of artificial production of p. ferulae by solid-state culture, the optimization of culture conditions was carried out. When $NH_4H_2PO_4$ and $CaCO_3$ were used in the cultures using test tube with 30 g of Populus sawdust at $25^{\circ}C{\pm}1$ in the dark, the favored mycelial growth was observed with $1\%$ of $NH_4H_2PO_4$ and the production of polysaccharide was 7.85 mg/100 mg of mycelium with $1\%$ of $CaCO_3$. The mixtures of $80\%$ of Populus Sawdust and $20\%$ of rice bran at $60\%$ of water content were determined to be optimal for the production of fruiting bodies in the sawdust culture. When three treatments containing various ratios of garlic powder were conducted, yields of fruiting bodies were drasti[ally higher than those of Synthetic mixture without garlic powder The highest yield (143 g/bag) was obtained with $7\%$ garlic powder. The yield of synthetic mixture containing $7\%$ of garlic powder was $83\%$ higher than that of Sawdust culture. The reason why garlic powder did support growth was not clear but it is possible that garlic powder might contain effective components for the formation of fruiting body. The optimal synthetic mixture composition consisted of cotton seed $77\%$, lime $6.4\%,\;K_2HPO_4\;0.2\%,\;KH_2PO_4\;0.2\%,\;CaHPO_4\;0.2\%$, corn flour $4\%$, wheat flour $5\%$, and garlic pow-der $7\%$.

Optimization of Preparation Conditions and Analysis of Food Components for Chicken Head Soup Base (닭머리 육수 제조 조건의 최적화 및 성분 분석)

  • Choi, Sung-Eun
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.5
    • /
    • pp.468-477
    • /
    • 2011
  • Optimum preparation conditions for chicken head soup base were determined in terms of the effects of amount of chicken head and cooking time using response surface methodology based on sensory properties. Sensory properties that were evaluated were yellowness, turbidity, bloody, chicken-brothy, organ meat-like, and fat-like flavor. All values of sensory characteristics increased remarkably with an increase in the amount of chicken head and cooking time. The optimum amount of chicken head and cooking time were determined to be 1800 g and 150 minutes, respectively. Chicken head soup base had less fat, free amino acids, nucleotides, and its derivatives, but had significantly more cholesterol, sodium, and iron than whole chicken soup base. In flavor compound analysis, the amount of hexanal of the chicken head soup base, which is related to fat rancidity flavor, was 11-fold higher than that of the whole chicken soup base.

Isolation ref Brevibacterium sp. CH1 and Properties of Its Enzyme (Brevibacterium sp. CH1의 분리 및 특성)

  • 장호남;이처영;황준식
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 1989
  • A bacterial strain of Brevibaterium sp. CH1 was isolated and used to produce an enzyme (nitrile hydratase) necessary for earring out the bioconversion of acrylonitrile to acrylamide. The culture and reaction conditions, and medium optimization were studied for the strain. The conversion yield was nearly 100% with a trace amount of acrylic acid produced. The strain showed strong activity of nitrile hydratase toward acrylonitrile and extremely low activity of the amidase toward acrylamide. We sought optimum culture conditions for the formation of nitrile hydratase by Brevibacterium sp. CH1. The effects of temperature and pH on the activity of free and immobilized tells were investigated. The nitrite hydratase of Brevibacterium sp. CH1 acted not only on various aliphatic nitrites such as acrylonitrile, propionitrile and acetonitrile, but also on aromatic nitrile as nicotinonitrile.

  • PDF

Optimization of Media Composition and Culture Conditions for the Mycelial Growth of Coriolus versicolor and Lentinus edodes (Coriolus versicolor와 Lentinus erodes의 영양배지 조성 및 배양조건의 최적화)

  • 박경숙;이재성
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.91-98
    • /
    • 1991
  • The media compositions and culture conditions were optimized for mycelial growth of Coriolus versicolor and Lentinus edodes. Media composition for optimal growth of Coriolus versicolor was 2.0% glucose 0.4% peptone and 0.6% yeast extract. Media composition for optimal growth of Lenttnus edodes was 2.0% glucose 2.0% starch 0.4% bacto-soytone and 0.6% yeast extract. The media supplemented with KH2PO4, 0.046% KH2PO4 0.1% and MgSO4, .7H2O 0.05% supported better mycelial growth than the media without mineral salts. The optimum temperature for mycelial growth ranged from $25^{\circ}C$-28$^{\circ}C$. The optimum pH range for mycelial growth of Coriolus versicolor was 5.2~5.6 while that of Lentinus edodes appeared to be 5.75.

  • PDF

Probiotic Properties and Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FBT215

  • Kim, Jaegon;Lee, Myung-Hyun;Kim, Min-Sun;Kim, Gyeong-Hwuii;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.783-791
    • /
    • 2022
  • Gamma-aminobutyric acid (GABA) improves various physiological illnesses, including diabetes, hypertension, depression, memory lapse, and insomnia in humans. Therefore, interest in the commercial production of GABA is steadily increasing. Lactic acid bacteria (LAB) have widely been reported as a GABA producer and are safe for human consumption. In this study, GABA-producing LAB were preliminarily identified and quantified via GABase assay. The acid and bile tolerance of the L. plantarum FBT215 strain were evaluated. The one-factor-at-a-time (OFAT) strategy was applied to determine the optimal conditions for GABA production using HPLC. Response surface methodology (RSM) with Box-Behnken design was used to predict the optimum GABA production. The strain FBT215 was shown to be acid and bile tolerant. The optimization of GABA production via the OFAT strategy resulted in an average GABA concentration of 1688.65 ± 14.29 ㎍/ml, while it was 1812.16 ± 23.16 ㎍/ml when RSM was applied. In conclusion, this study provides the optimum culture conditions for GABA production by the strain FBT215 and indicates that L. plantarum FBT215 is potentially promising for commercial functional probiotics with health claims.

Optimization of Culture Conditions for Phenylethyl Alcohol Production by Pichia anomala SKM-T Using Response Surface Methodology

  • Mo, Eun-Kyoung;Sung, Chang-Keun
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.159-162
    • /
    • 2007
  • Optimization of the fermentation medium for phenylethyl alcohol (PEA) production by Pichia anomala SKM-T was performed. The carbon source (glucose), nitrogen source (L-phenylalanine), and initial pH value were independent variables of the optimized medium. The central composite rotatable design was used for the experimental design and the analysis of the results. The optimum medium composition for the maximal production (621.27 mg/L) of PEA was found to be an initial pH of 5.03, and concentrations of L-phenylalanine at 6.53 and glucose at 6.11 g/L (w/v). This experimental finding is in close agreement with the model prediction (702.79 mg/L; desirability 0.884) with an 11.6% difference.

Enhanced Antibiotic Production by Streptomyces sindenensis Using Artificial Neural Networks Coupled with Genetic Algorithm and Nelder-Mead Downhill Simplex

  • Tripathi, C.K.M.;Khan, Mahvish;Praveen, Vandana;Khan, Saif;Srivastava, Akanksha
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.939-946
    • /
    • 2012
  • Antibiotic production with Streptomyces sindenensis MTCC 8122 was optimized under submerged fermentation conditions by artificial neural network (ANN) coupled with genetic algorithm (GA) and Nelder-Mead downhill simplex (NMDS). Feed forward back-propagation ANN was trained to establish the mathematical relationship among the medium components and length of incubation period for achieving maximum antibiotic yield. The optimization strategy involved growing the culture with varying concentrations of various medium components for different incubation periods. Under non-optimized condition, antibiotic production was found to be $95{\mu}g/ml$, which nearly doubled ($176{\mu}g/ml$) with the ANN-GA optimization. ANN-NMDS optimization was found to be more efficacious, and maximum antibiotic production ($197{\mu}g/ml$) was obtained by cultivating the cells with (g/l) fructose 2.7602, $MgSO_4$ 1.2369, $(NH_4)_2PO_4$ 0.2742, DL-threonine 3.069%, and soyabean meal 1.952%, for 9.8531 days of incubation, which was roughly 12% higher than the yield obtained by ANN coupled with GA under the same conditions.

Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation

  • Kim, Byung Soo;Kim, Ji Yeon
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.48-56
    • /
    • 2020
  • This study aimed to optimize the culture conditions to improve the crude biosurfactant activity of Bacillus pumilus IJ-1, using a 33 full-factorial design of response surface methodology (RSM). It was found that submerged fermentation of B. pumilus improved the activity of the crude biosurfactant. The factors selected for optimization were NaCl concentration, temperature, and tryptone concentration. Response surface analysis revealed that the fitted quadratic model was statistically significant and produced an adequate R2 value (0.9898) and a low probability value (<0.0001). The optimum level for each factor was found to be 0.567% (w/v) NaCl, 21.851℃ and 0.765% (w/v) tryptone, respectively. Crude biosurfactant activity was found to be most affected by tryptone concentration; then temperature, and finally NaCl concentration. Our results may potentially facilitate large-scale biosurfactant production from B. pumilus IJ-1.

Enhanced Production of Exopolysaccharides by Fed-batch Culture of Ganoderma resinaceum DG-6556

  • Kim Hyun-Mi;Paik Soon-Young;Ra Kyung-Soo;Koo Kwang-Bon;Yun Jong-Won;Choi Jang-Won
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.233-242
    • /
    • 2006
  • The objectives of this study were to optimize submerged culture conditions of a new fungal isolate, Ganorderma resinaceum, and to enhance the production of bioactive mycelial biomass and exopolysaccharides (EPS) by fed-batch culture. The maximum mycelial growth and EPS production in batch culture were achieved in a medium containing 10 g/l glucose, 8 g/l soy peptone, and 5 mM $MnCl_2$ at an initial pH 6.0 and temperature $31^{\circ}C$. After optimization of culture medium and environmental conditions in batch cultures, a fed-batch culture strategy was employed to enhance production of mycelial biomass and EPS. Five different EPS with molecular weights ranging from 53,000 to 5,257,000 g/mole were obtained from either top or bottom fractions of ethanol precipitate of culture filtrate. A fed-batch culture of G. resinaceum led to enhanced production of both mycelial biomass and EPS. The maximum concentrations of mycelial biomass (42.2 g/l) and EPS (4.6 g/l) were obtained when 50 g/l of glucose was fed at day 6 into an initial 10 g/l of glucose medium. It may be worth attempting with other mushroom fermentation processes for enhanced production of mushroom polysaccharides, particularly those with industrial potential.

Optimization of Submerged Culture Conditions for the Production of Ginseng Root Using Response Surface Method (반응표면분석법을 이용한 인삼 Root 액체배양조건의 최적화)

  • 오훈일;장은정;이시경;박동기
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.58-63
    • /
    • 2000
  • To develop the production of ginseng root using plant tissue culture technology, submerged culture conditions were optimized by means of the fractional factorial design with 4 factors and 3 levels by a RSM computer program. The ginseng (Panax ginseng C. A. Meyer) roots induced by plant growth regulators were cultured on SH medium and the effects of various pH of medium, sucrose concentration, nitrogen concentration and phosphate concentration on fresh weight of the ginseng root were investigated. The fresh weight of ginseng root increased with a decrease in nitrogen concentration and fresh weight of ginseng root varied from 1.00 to 2.33g under various conditions. The optimum pH of medium and sucrose concentration determined by a partial differentiation of the model equation, nitrogen and phosphate concentration were pH 5.6, sucrose 3.8%, nitrogen 50 mg/L and phosphate 80.7 mg/L, respectively. Under these conditions, the predicted growth of ginseng root was estimated to be 2.36g.

  • PDF