• 제목/요약/키워드: optimization model

검색결과 5,666건 처리시간 0.034초

Multi-Objective Optimization Model of Electricity Behavior Considering the Combination of Household Appliance Correlation and Comfort

  • Qu, Zhaoyang;Qu, Nan;Liu, Yaowei;Yin, Xiangai;Qu, Chong;Wang, Wanxin;Han, Jing
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1821-1830
    • /
    • 2018
  • With the wide application of intelligent household appliances, the optimization of electricity behavior has become an important component of home-based intelligent electricity. In this study, a multi-objective optimization model in an intelligent electricity environment is proposed based on economy and comfort. Firstly, the domestic consumer's load characteristics are analyzed, and the operating constraints of interruptible and transferable electrical appliances are defined. Then, constraints such as household electrical load, electricity habits, the correlation minimization electricity expenditure model of household appliances, and the comfort model of electricity use are integrated into multi-objective optimization. Finally, a continuous search multi-objective particle swarm algorithm is proposed to solve the optimization problem. The analysis of the corresponding example shows that the multi-objective optimization model can effectively reduce electricity costs and improve electricity use comfort.

Evolutionary Optimization of Pulp Digester Process Using D-optimal DOE and RSM

  • Chu, Young-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.395-395
    • /
    • 2000
  • Optimization of existing processes becomes more important than the past as environmental problems and concerns about energy savings stand out. When we can model a process mathematically, we can easily optimize it by using the model as constraints. However, modeling is very difficult for most chemical processes as they include numerous units together with their correlation and we can hardly obtain parameters. Therefore, optimization that is based on the process models is, in turn, hard to perform. Especially, f3r unknown processes, such as bioprocess or microelectronics materials process, optimization using mathematical model (first principle model) is nearly impossible, as we cannot understand the inside mechanism. Consequently, we propose a few optimization method using empirical model evolutionarily instead of mathematical model. In this method, firstly, designing experiments is executed fur removing unecessary experiments. D-optimal DOE is the most developed one among DOEs. It calculates design points so as to minimize the parameters variances of empirical model. Experiments must be performed in order to see the causation between input variables and output variables as only correlation structure can be detected in historical data. And then, using data generated by experiments, empirical model, i.e. response surface is built by PLS or MLR. Now, as process model is constructed, it is used as objective function for optimization. As the optimum point is a local one. above procedures are repeated while moving to a new experiment region fur finding the global optimum point. As a result of application to the pulp digester benchmark model, kappa number that is an indication fur impurity contents decreased to very low value, 3.0394 from 29.7091. From the result, we can see that the proposed methodology has sufficient good performance fur optimization, and is also applicable to real processes.

  • PDF

헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구 (A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade)

  • 송근웅;최종수
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.

크리깅 근사모델을 이용한 강건설계에 관한 연구 (A Study on the Robust Design Using Kriging Surrogate Models)

  • 이권희;조용철;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.870-875
    • /
    • 2004
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, the robust design strategy is developed based on the DACE and the global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the system. The robustness is determined by the DACE model to reduce the real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

  • PDF

계층적 경쟁기반 병렬 유전자 알고리즘을 이용한 퍼지집합 퍼지모델의 최적화 (Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Parallel Genetic Algorithms)

  • 최정내;오성권;황형수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.2097-2098
    • /
    • 2006
  • In this study, we introduce the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA). HFCGA is a kind of multi-populations of Parallel Genetic Algorithms(PGA), and it is used for structure optimization and parameter identification of fuzzy set model. It concerns the fuzzy model-related parameters as the number of input variables, a collection of specific subset of input variables, the number of membership functions, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

진화 구조 최적화 기법을 이용한 개구부의 형상 최적화에 관한 연구 (A Study on the Shape Optimization of a Cutout Using Evolutionary Structural Optimization Method)

  • 류충현;이영신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.369-372
    • /
    • 2000
  • ESO(Evolutionary Structural Optimization) method is known that elements involved low stress value are removed from the previous model or that elements are added around elements involved high stress level on it and then the optimized model is obtained with required weight. Rejection ratio/addition ratio and evolutionary ratio are predefined and elements having lower/higher stress than reference stress, which average Mises stress on edge elements times rejection ratio, are deleted/added. In this study, when the plate having a cutout is subjected various in-plane load, a cutout shape is optimized using ESO method. ANSYS is used to analyse a finite element model and optimization procedure is made by APDL (ANSYS Parametric Design Language). ESO method is useful in rather than a complex structure optimization as well as a cutout shape optimization.

  • PDF

Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구 (Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis)

  • 이현규;이정수;김동화;조진수
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

mmWave 레이더 기반 사람 행동 인식 딥러닝 모델의 경량화와 자원 효율성을 위한 하이퍼파라미터 최적화 기법 (Hyperparameter optimization for Lightweight and Resource-Efficient Deep Learning Model in Human Activity Recognition using Short-range mmWave Radar)

  • 강지헌
    • 대한임베디드공학회논문지
    • /
    • 제18권6호
    • /
    • pp.319-325
    • /
    • 2023
  • In this study, we proposed a method for hyperparameter optimization in the building and training of a deep learning model designed to process point cloud data collected by a millimeter-wave radar system. The primary aim of this study is to facilitate the deployment of a baseline model in resource-constrained IoT devices. We evaluated a RadHAR baseline deep learning model trained on a public dataset composed of point clouds representing five distinct human activities. Additionally, we introduced a coarse-to-fine hyperparameter optimization procedure, showing substantial potential to enhance model efficiency without compromising predictive performance. Experimental results show the feasibility of significantly reducing model size without adversely impacting performance. Specifically, the optimized model demonstrated a 3.3% improvement in classification accuracy despite a 16.8% reduction in number of parameters compared th the baseline model. In conclusion, this research offers valuable insights for the development of deep learning models for resource-constrained IoT devices, underscoring the potential of hyperparameter optimization and model size reduction strategies. This work contributes to enhancing the practicality and usability of deep learning models in real-world environments, where high levels of accuracy and efficiency in data processing and classification tasks are required.

디지털 이미지를 이용한 위상최적설계 (Topology Optimization Using Digital Images)

  • 신운주;민승재
    • 한국CDE학회논문집
    • /
    • 제11권4호
    • /
    • pp.265-272
    • /
    • 2006
  • For the design and analysis of 3D object featuring complexity and irregularity in shape, sectional digital images measured by an industrial CT scanner are employed to generate a finite element model with uniform voxels. The voxel model plays a key role in developing an integrated reverse engineering system including geometric modeling, simulation and optimization. Design examples applied to topology optimization show that the proposed approach can provide a remarkable reduction in time cost at the conceptual and detail design stages.