• Title/Summary/Keyword: optimization method

Search Result 9,151, Processing Time 0.032 seconds

The Optimization of RF Atmospheric Pressure Plasma Treatment Process for Improving the Surface Free Energy of Polymethylmethacrylate (PMMA) (Polymethylmethacrylate (PMMA) 표면개질을 위한 RF 대기압 플라즈마 처리공정의 최적화)

  • Nam, Ki-Chun;Myung, Sung-Woon;Choi, Ho-Suk
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • This study investigated the influence of atmospheric plasma factors such as RF power, treatment time, the gap distance between discharge and sample, and the gas flow rate of Ar on the surface property by using the design of experiment (DOE) method. The plasma treatment time (s), plasma power (W), gap distance (mm) between discharge and sample, and flow rate of Ar gas were in order of important factors for changing the surface free energy of PMMA plates. As a result, the most effective factor for improving the surface free energy of PMMA plates is the distance (mm) from discharge glow to sample plate. Because of the interaction between plasma power (W) and treatment time (s), the power dose (J) factor which multiply plasma power (W) by treatment time (s) should be significantly considered. The optimum condition for maximizing the surface free energy of PMMA plate was found at 1500J of power dose. Through XPS and AFM analysis, we also observed the change of chemical composition, surface morphology and roughness before and after plasma treatment. It is considered that the change of surface free energy of PMMA plate with plasma treatment is influenced by the introduction of polar functional group as well as the increase of surface roughness.

  • PDF

Optimization of microwave-assisted extraction process of Hordeum vulgare L. by response surface methodology (반응표면분석법을 이용한 새싹보리 마이크로웨이브 추출공정의 최적화)

  • Lee, Jae-Jun;Park, Dae-Hee;Lee, Won-Young
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.949-956
    • /
    • 2017
  • This study attempted to find optimum extract range of active ingredient for barley sprouts (Hordeum vulgare L.). Extracts from Hordeum vulgare L. were made by microwave extraction method and total polyphenol content (TPC), total flavonoid content (TFC), DPPH radical scavenging activity (DPPH) were measured with extract of Hordeum vulgare L.. Response surface methodology (RSM) was applied to a extraction process, and central composite design (CCD) was also used for this process to examine the optimum condition. Independent variables ($X_n$) are concentration of ethanol ($X_1$: 0, 25, 50, 75, 100%), microwave power ($X_2$: 60, 120, 180, 240, 300 W), extraction time ($X_3$: 4, 8, 12, 16, 20 min). Dependent variables ($Y_n$) are TPC ($Y_1$), TFC ($Y_2$), DPPH radical scavenging ($Y_3$). It is formed by sixteen conditions to extract. The $R^2$ value of dependent variables is ranged from 0.90 to 0.97 (p<0.05). Experiments values within the optimal range (40% of ethanol concentration, 120 W of microwave power, 18 min of extraction time) were 3.74 mg GAE/g (TPC), 3.00 mg RE/g (TFC), 35.43% (DPPH), respectively. Under the optimized conditions, predicted value showed no significant difference comparing with the experimental values.

Pervaporation Characteristics of Water/Ethanol and Water/Isopropyl Alcohol Mixtures through Zeolite 4A Membranes: Activity Coefficient Model and Maxwell Stefan Model (제올라이트 4A 분리막을 이용한 물/에탄올, 물/이소프로필알코올 혼합물의 투과증발 특성 연구 : 활동도계수모형 및 Generalized Maxwell Stefan 모형)

  • Oh, Woong Jin;Jung, Jae-Chil;Lee, Jung Hyun;Yeo, Jeong-gu;Lee, Da Hun;Park, Young Cheol;Kim, Hyunuk;Lee, Dong-Ho;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • In this study, pervaporation experiments of water, ethanol and IPA (Isopropyl alcohol) single components and water/ethanol, water/IPA mixtures were carried out using zeolite 4A membranes developed by Fine Tech Co. Ltd. Those membranes were fabricated by hydrothermal synthesis (growth in hydrothermal condition) after uniformly dispersing the zeolite seeds on the tubular alumina supports. They have a pore size of about $4{\AA}$ by ion exchange of $Na^+$ to the LTA structure with Si/Al ratio of 1.0, and shows strong hydrophilic property. Physical characteristics of prepared membranes were evaluated by using SEM (surface morphology), porosimetry (macro- or meso- pore analysis), BET (micropore analysis), and load tester (compressive strength). Pervaporation experiments with various temperature and concentration conditions confirmed that the zeolite 4A membrane can selectively separate water from ethanol and IPA. Water/ethanol separation factor was over 3,000 and water/IPA separation factor was over 1,500 (50 : 50 wt%, initial feed concentration). Pervaporation behaviors of single components and binary mixtures were predicted using ACM (activity coefficient model), GMS (generalized Maxwell Stefan) model and DGM (Dusty Gas Model). The adsorption and diffusion coefficients of the zeolite top layer were obtained by parameter estimation using GA (Genetic Algorithm, stochastic optimization method). All the calculations were carried out using MATLAB 2018a version.

A Study on Configuration Optimization for Rotorcraft Fuel Cells based on Neural Network (인공신경망을 이용한 연료셀 형상 최적화 연구)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • Crashworthy fuel cells have been widely implemented to rotorcraft and rendered a great contribution for improving the survivability of crews and passengers. Since the embryonic stage of military rotorcraft history began, the US army has developed and practised a detailed military specification documenting the unique crashworthiness requirements for rotorcraft fuel cells to prevent most fatality due to post-crash fire. Foreign manufacturers have followed their long term experience to develop their fuel cells, and have reflected the results of crash impact tests on the trial-and-error based design and manufacturing procedures. Since the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, a series of numerical simulations of the crash impact test with digital mock-ups is necessary even at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. In the present study a number of numerical simulations on fuel cell crash impact tests are performed with a crash simulation software, Autodyn. The resulting equivalent stresses are further analysed to evaluate a number of appropriate design parameters and the artificial neural network and simulated annealing method are simultaneously implemented to optimize the crashworthy performance of fuel cells.

Complex Permeability of 0-3 Polymer Magnetic Composites for Near-Field Communication (근역장 통신용 0-3형 고분자 자성 복합소재의 복소투자율 변화)

  • Nam, Joong-Hee;Lim, Choong Hyuck;Yun, Ji Sun;Jeong, Young-Hun;Cho, Jeong-Ho;Paik, Jong Hoo;Kim, Hyo Tae;Kim, Jong-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.216-220
    • /
    • 2012
  • Magnetic properties of composite materials consisting of polymer filled with ferromagnetic powders (MnZn ferrite, Fe-Si alloy) were investigated in this study. The volume fraction of magnetic powders as fillers was varied from 70 % to 95 %. This paper presents the fabrication method of polymer magnetic composites in an effort to produce the 0-3 types of MnZn ferrite and FeSi as fillers with a proper complex permeability through the optimization of some experimental parameters. The polymer matrix composites were prepared by mixing the crushed ferrites and flaky FeSi powders homogenously with low-density resins (EPDM, epoxy). The relationships among the manufacturing technology of these materials, their filler volume fraction, as well as their complex permeability were measured and analyzed.

Characterization of Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge (원소 황 입자와 활성슬러지를 이용한 퍼클로레이트 제거특성)

  • Han, Kyoung-Rim;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.676-681
    • /
    • 2013
  • Perchlorate (${ClO_4}^-$) is an emerging contaminant found in surface water and soil/groundwater. Microbial removal of perchlorate is the method of choice since perchlorate-reducing bacteria (PRB) can reduce perchlorate to harmless end-products. A previous study [3] showed experimental evidence of autotrophic perchlorate removal using elemental sulfur granules and activated sludge. The granular sulfur is a relatively inexpensive electron donor, and activated sludge is easily available from a wastewater treatment plant. A batch test was performed in this study to further investigate the effect of various environmental parameters on the perchlorate degradation by sludge microorganisms when elemental sulfur was used as electron donor. Results of the batch test suggest optimum conditions for autotrophic perchlorate degradation by sludge microorganisms. The results also show that sulfur-oxidizing PRB enriched from activated sludge removed perchlorate better than activated sludge. Taken together, this study suggests that autotrophic perchlorate removal using elemental sulfur and activated sludge can be improved by employing optimized environmental conditions and enrichment culture.

A Study on Shape Optimization and Hemolysis Evaluation of Axial Flow Blood Pump by Using Computational Fluid Dynamics Analysis (CFD해석을 이용한 축류형 혈액펌프의 용혈평가 및 형상개량에 관한 기초연구)

  • 김동욱;임상필
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2004
  • The non pulsation blood pump is divided into axial flow and centrifugal style according to the direction of inlet and outlet flow. An axial flow blood pump can be made smaller than a centrifugal blood pump because centrifugal pump's rpm is fewer than axial flow pump. Hemolysis is an important factor for the development of an axial flow blood pump. It is difficult to identify the areas where hemolysis occurs. Evaluation of hemolysis both in in-vitro and in-vivo test requires a long-time and more expensive. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer which just can get not only amount of htmolysis but also location of hemolysis. It takes shorter time and less expensive than in-vitro test. The purpose of this study is to git Computational fluid dynamics in axial flow pump and to verify the accuracy of prediction by the possibility of design comparing CFD results with in-vitro experimental results. Also, wish to figure out the correction method that can bring improvement in shape of axial flow blood pump using CFD analysis.

Optimization of Thickness and Maturation Period of Andong-Soju Nuruk for Fermentation of Andong-Soju (안동소주 누룩 제조를 위한 누룩 두께 및 누룩 띄움시간의 최적화)

  • Bae, Kyung-Hwa;Ryu, Hee-Young;Kwun, In-Sook;Kwon, Chong-Suk;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.231-237
    • /
    • 2007
  • To support the fermentational superiority of Korean nuruks and maintain the various domestic nuruks, the optimal nuruk production of Andong-Soju, which was designated as an intangible cultural asset of Gyungsangbukdo province from 1987, was investigated. Different thickness of nuruks ($2.2{\sim}5.5\;cm$) were manufactured based on traditional Andong-Soju nuruk method, while the size of round form of nuruk was set to 23 cm. During the 3 weeks maturation, changes of water content, weight, pH, brix, the amount of reducing sugar, sac-charifying activity, viable cell and major microorganisms were determined, Also, ethanol fermentation abilities of the manufactured nuruks were evaluated using 20% glucose medium or 16% starch medium, respectively. Our results indicated that the production of high quality of Andong-Soju nuruk needs $4.0{\sim}5.5\;cm$ thickness and 3 weeks maturation without extraneous yeast addition. These results would be applied to production of homogeneous, and high quality of Andong-Soju nuruk.

Generation Dispatch Algorithm Applying a Simulation Based Optimization Method (시뮬레이션 기반 최적화 기법을 적용한 발전력 재분배 알고리즘)

  • Kang, Sang-Gyun;Song, Hwachang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • This paper suggests the optimal generation dispatch algorithm for ensuring voltage stability margin considering high wind energy injection. Generally, with wind generation being installed into the power system, we would have to consider several factors such as the voltage stability margin because wind turbine generators are mostly induction machines. If the proportion of wind generation increases in the power system increases this would affect the overall stability of the system including the voltage stability. This paper considers a specific system that is composed of two areas: area 1 and area 2. It is assumed that generation cost in area 1 is relatively higher than that in area 2. From an economic point of view generation in area 1 should be decreased, however, in the stability point of view the generation in area 2 should be decreased. Since the power system is a nonlinear system, it is very difficult to find the optimal solution and the genetic algorithm is adopted to solve the objective function that is composed of a cost function and a function concerned with voltage stability constraints. For the simulations, the New England system was selected. The algorithm is implemented and Python 2.5.

Improvement of Address Pointer Assignment in DSP Code Generation (DSP용 코드 생성에서 주소 포인터 할당 성능 향상 기법)

  • Lee, Hee-Jin;Lee, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.37-47
    • /
    • 2008
  • Exploitation of address generation units which are typically provided in DSPs plays an important role in DSP code generation since that perform fast address computation in parallel to the central data path. Offset assignment is optimization of memory layout for program variables by taking advantage of the capabilities of address generation units, consists of memory layout generation and address pointer assignment steps. In this paper, we propose an effective address pointer assignment method to minimize the number of address calculation instructions in DSP code generation. The proposed approach reduces the time complexity of a conventional address pointer assignment algorithm with fixed memory layouts by using minimum cost-nodes breaking. In order to contract memory size and processing time, we employ a powerful pruning technique. Moreover our proposed approach improves the initial solution iteratively by changing the memory layout for each iteration because the memory layout affects the result of the address pointer assignment algorithm. We applied the proposed approach to about 3,000 sequences of the OffsetStone benchmarks to demonstrate the effectiveness of the our approach. Experimental results with benchmarks show an average improvement of 25.9% in the address codes over previous works.