• Title/Summary/Keyword: optimization formulation

Search Result 536, Processing Time 0.036 seconds

Virtual Network Embedding through Security Risk Awareness and Optimization

  • Gong, Shuiqing;Chen, Jing;Huang, Conghui;Zhu, Qingchao;Zhao, Siyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2892-2913
    • /
    • 2016
  • Network virtualization promises to play a dominant role in shaping the future Internet by overcoming the Internet ossification problem. However, due to the injecting of additional virtualization layers into the network architecture, several new security risks are introduced by the network virtualization. Although traditional protection mechanisms can help in virtualized environment, they are not guaranteed to be successful and may incur high security overheads. By performing the virtual network (VN) embedding in a security-aware way, the risks exposed to both the virtual and substrate networks can be minimized, and the additional techniques adopted to enhance the security of the networks can be reduced. Unfortunately, existing embedding algorithms largely ignore the widespread security risks, making their applicability in a realistic environment rather doubtful. In this paper, we attempt to address the security risks by integrating the security factors into the VN embedding. We first abstract the security requirements and the protection mechanisms as numerical concept of security demands and security levels, and the corresponding security constraints are introduced into the VN embedding. Based on the abstraction, we develop three security-risky modes to model various levels of risky conditions in the virtualized environment, aiming at enabling a more flexible VN embedding. Then, we present a mixed integer linear programming formulation for the VN embedding problem in different security-risky modes. Moreover, we design three heuristic embedding algorithms to solve this problem, which are all based on the same proposed node-ranking approach to quantify the embedding potential of each substrate node and adopt the k-shortest path algorithm to map virtual links. Simulation results demonstrate the effectiveness and efficiency of our algorithms.

Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic Algorithm in Computational Grid

  • Kaiwartya, Omprakash;Prakash, Shiv;Abdullah, Abdul Hanan;Hassan, Ahmed Nazar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2821-2839
    • /
    • 2015
  • Energy consumption by large computing systems has become an important research theme not only because the sources of energy are depleting fast but also due to the environmental concern. Computational grid is a huge distributed computing platform for the applications that require high end computing resources and consume enormous energy to facilitate execution of jobs. The organizations which are offering services for high end computation, are more cautious about energy consumption and taking utmost steps for saving energy. Therefore, this paper proposes a scheduling technique for Minimizing Energy consumption using Adapted Genetic Algorithm (MiE-AGA) for dependent tasks in Computational Grid (CG). In MiE-AGA, fitness function formulation for energy consumption has been mathematically formulated. An adapted genetic algorithm has been developed for minimizing energy consumption with appropriate modifications in each components of original genetic algorithm such as representation of chromosome, crossover, mutation and inversion operations. Pseudo code for MiE-AGA and its components has been developed with appropriate examples. MiE-AGA is simulated using Java based programs integrated with GridSim. Analysis of simulation results in terms of energy consumption, makespan and average utilization of resources clearly reveals that MiE-AGA effectively optimizes energy, makespan and average utilization of resources in CG. Comparative analysis of the optimization performance between MiE-AGA and the state-of-the-arts algorithms: EAMM, HEFT, Min-Min and Max-Min shows the effectiveness of the model.

Photosensitive Barrier Rib Paste for PDP and Photolithographic Process (Plasma Display Panel용 감광성 격벽 재료 및 Photolithography 공정 성질)

  • Park, Lee Soon;Jeong, Seung Won;Oh, Hyun Shik;Kim, Soon Hak;Song, Sang Moo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1114-1118
    • /
    • 1999
  • Barrier rib for the plasma display panel(PDP) was made by photolithographic process utilizing photosensitive barrier rib paste. The barrier rib paste was prepared by first dissolving ethylcellulose(binder polymer) in butyl carbitol(BC)/butyl carbitol acetate(BCA) =30/70 wt % mixture solvent at 15 wt % concentration. To this solution a mixture of functional monomers consisted of tripropyleneglycol diacrylate/ pentaerythritol triacrylate = 50/50 wt %, Irgacur 651 photoinitiator, and barrier rib powder were added and then the whole mixture was mixed in the three roll mill for 2 hr. The effect of component and concentration of photosensitive barrier paste on the photolithographic process was studied. After optimization of the paste formulation and photolithographic process, barrier rib could be obtained with good resolution up to $100{\mu}m$ height.

  • PDF

Design of Hierarchical Ring-Mesh Optical Networks Considering Cabling Cost (케이블 비용을 고려한 링메쉬 구조의 광통신망 설계)

  • Han, Jung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1716-1729
    • /
    • 2010
  • In this paper, we deal with a hierarchical ring-mesh optical network design problem. The objective is to minimize the total cost of optical add-drop multiplexers (OADMs) handling intra-ring traffic, optical cross-connects (OXCs) handling inter-ring traffic, and cabling cost among OADMs and among OXCs, while satisfying intra-ring and inter-ring capacities. We develop an integer programming (IP) formulation for the problem and devise some cutting planes that partially break the symmetry of rings. Dealing with the inherent computational complexity of the problem, we devise an effective heuristic procedure that finds a good quality feasible solution within reasonable computing times. Computational results demonstrate the efficacy of the proposed solution procedure; the developed symmetry breaking inequalities significantly reduce the computing time to find an optimal solution for small size problems, and the heuristic procedure finds a better feasible solution than that CPLEX, a commercial optimization software, finds for large size problems.

Developement of a Object Oriented Based Meta Modeling Design Framework Using XML (XML을 이용한 객체지향 메타 모델링 기반 설계 프레임워크)

  • Chu, Min-Sik;Choi, Dong-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.7-16
    • /
    • 2005
  • Computer applications for engineering design evolve rapidly. Many design frameworks were developed by the simulation based systems so that organizations could achieve significant benefits due to cost reduction in designing. However, today’s transient design issue requires being adaptable to more complicated and atypical problems. In this paper the Multidisciplinary Language Runtime (MLR) design framework is developed. The MLR provides flexible and extensible interface between analysis modules and numerical analysis codes. It also supports Meta Modeling, Meta Variable, and XML script for atypical design formulation. By applying object-oriented design scheme to implement abstractions of the key components required for iterative systems analyses, the MLR provides flexible and extensible problem-solving environment.

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

LMI Based L2 Robust Stability Analysis and Design of Fuzzy Feedback Linearization Control Systems (LMI를 기반으로 한 퍼지 피드백 선형화 제어 시스템의 L2 강인 안정성 해석)

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.582-589
    • /
    • 2003
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included Un the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Selection of Optimum Ratio of 3 Components (Ir-Sn-Sb) Electrode using Design of Mixture Experiments (혼합물 실험계획법을 이용한 3성분(Ir-Sn-Sb) 전극의 최적비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.737-744
    • /
    • 2016
  • For electrolysis process using an insoluble electrode, electrochemical performance was greatly affected by the manufacturing method and procedure, such as the firing temperature, pre-treatment, type of precursor solution, coating method, electrode material, etc. Components of the electrode therein is one of the most important factors in electrochemical reaction. To achieve such characteristics, a appropriate ratio of the electrode material should be carefully chosen. The aim of this research was to apply experimental design method in the optimization of electrode component for the maximum generation of oxidants in electrochemical oxidation process. Mixture design, especially expanded simplex lattice design, in DOME (design of mixture experiments) with Design Expert - commercial software - was used to analyze the data. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9470, thus ensuring a satisfactory adjustment of the $3^{rd}$ order special cubic regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the TRO generation concentration and independent variables(mol ratio of 3 electrode components) in a real unit: TRO generation concentration $(mg/L)=TRO\;conc.=98.25{\times}[Ir]+49.71{\times}[Sn]+95.29{\times}[Sb]-16.91{\times}[Ir]{\times}[Sn]-29.47{\times}[Ir]{\times}[Sb]-22.65{\times}[Sn]{\times}[Sb]+703.19{\times}[Ir]{\times}[Sn]{\times}[Sb]$. The optimized formulation of the 3 component electrode for an high TRO (total residual oxidants) generation was acquired at mol ratio of Ir 0.406, Sn 0.210, Sb 0.384 (desirability d value, 1).

Optimized Structural and Colorimetrical Modeling of Yarn-Dyed Woven Fabrics Based on the Kubelka-Munk Theory (Kubelka-Munk이론에 기반한 사염직물의 최적화된 구조-색채모델링)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.503-515
    • /
    • 2018
  • In this research, the three-dimensional structural and colorimetrical modeling of yarn-dyed woven fabrics was conducted based on the Kubelka-Munk theory (K-M theory) for their accurate color predictions. In the K-M theory for textile color formulation, the absorption and scattering coefficients, denoted K and S, respectively, of a colored fabric are represented using those of the individual colorants or color components used. One-hundred forty woven fabric samples were produced in a wide range of structures and colors using red, yellow, green, and blue yarns. Through the optimization of previous two-dimensional color prediction models by considering the key three-dimensional structural parameters of woven fabrics, three three-dimensional K/S-based color prediction models, that is, linear K/S, linear log K/S, and exponential K/S models, were developed. To evaluate the performance of the three-dimensional color prediction models, the color differences, ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and ${\Delta}E_{CMC(2:1)}$, between the predicted and the measured colors of the samples were calculated as error values and then compared with those of previous two-dimensional models. As a result, three-dimensional models have proved to be of substantially higher predictive accuracy than two-dimensional models in all lightness, chroma, and hue predictions with much lower ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and the resultant ${\Delta}E_{CMC(2:1)}$ values.

Multi-agent System based GENCO model for an effective market simulation (전력시장 시뮬레이션을 위한 MAS 기반 GENCO 모델링)

  • Kang, Dong-Joo;Kim, Hak-Man;Chung, Koo-Hyung;Han, Seok-Man;H.Kim, Bal-Ho;Hur, Don
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.127-129
    • /
    • 2007
  • Since the competitive market environment was introduced into the electric power industry, the structure of the industry has been changing from vertically integrated system to functionally unbundled and decentralized system composed of multiple (decision-making) market participants. So the market participants such as Gencos or LSE (load serving entity) need to forecast the market clearing price and thus build their offer or bidding strategies. Not just these market players but also a market operator is required to perform market analysis and ensure simulation capability to manage and monitor the competitive electricity market. For fulfilling the demand for market simulation, many global venders like GE, Henwood, Drayton Analytics, CRA, etc. have developed and provided electricity market simulators. Most of these simulators are based on the optimization formulation which has been used mainly for the least cost resource planning in the centralized power system planning and operation. From this standpoint, it seems somehow inevitable to face many challenges on modeling competitive market based on the method of traditional market simulators. In this paper, we propose a kind of new method, which is MAS based market simulation. The agent based model has already been introduced in EMCAS, one of commercial market simulators, but there may be various ways of modeling agent. This paper, in particular, seeks to introduce an model for MAS based market simulator.

  • PDF