• Title/Summary/Keyword: optimization conditions

Search Result 3,141, Processing Time 0.029 seconds

Optimization of Extraction Condition and Stability of Olive Leaf Extract (올리브 잎의 적정 추출조건 및 추출물의 안정성 조사)

  • Lee, Ok-Hwan;Lee, Hee-Bong;Lee, Jun-Soo;Lee, Boo-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.178-182
    • /
    • 2005
  • Basic optimal extraction condition and stability data were determined for prediction of usefulness of olive leaf as functional food material. Solid contents of olive leaf extracts increased with increasing extraction temperature and ethanol content, and was the highest (38%) under $85^{\circ}C$, 80% ethanol, and 5 hr treatment conditions, Total phenol contents and electron-donating abilities of olive leaf extracts also increased with Increasing ethanol content, and were the highest under $25^{\circ}C$, 80% ethanol, and 1 hr treatment conditions, then slightly decreased during storage at $25,\;55,\;and\;85^{\circ}C$. Olive leaf extract showed high stability under acidic storage condition, while low under alkalic condition.

Extraction Process Optimization of Poncirus trifoliata and Prunus mume for Antibacterial Activity against Vibrio parahaemolyticus (장염비브리오 항균활성을 위한 탱자와 매실의 추출조건 최적화)

  • Lee, Young-Guen;Choi, Young-Whan;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.640-646
    • /
    • 2006
  • The present investigation was carried out particularly to optimize the extraction process of Poncirus trifoliata and Prunus mume to develop a functional foodstuff having antibacterial activity against Vibrio parahaemolyticus. The extracts were prepared from the fruits under various conditions, and then optimum extraction conditions were decided in case maximal antibacterial activity was obtained. In extraction process by using hot water, the best antibacterial activity of Poncirus trifoliata was achieved at $80{\sim}100^{\circ}C$ for 30 min, while that of Prunus mume was achieved at $100^{\circ}C$ for 30 min, as showing 14.8 and 16.6 mm of inhibition diameter, respectively. The extraction process with addition of NaOH increased the activity of Prunus mume, but addition of $K_2CO_3$ and $NaHCO_3$ drastically decreased the activity. In the processes at high temperature up to $120^{\circ}C$ by using pressure extractor and with various concentrations of NaOH, the maximum activity was observed in the extract of Prunus mume at $120^{\circ}C$ for 30 min with 0.05 N NaOH. The fermented ethanol extract of the fruits showed less activity than those of the extracts with water and NaOH solution.

Optimization of Reinforcement Effect of Large-diameter Drilled Deep Foundation (보강형 현장타설말뚝의 최적보강효과 분석)

  • 남대승;김수일;이준환;윤경식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • Drilled deep foundations of large diameter are often used for foundations of transmission towers. As tower structures become larger in modern society, there is a need of more efficient and economical design of large-diameter drilled deep foundations. Reinforced drilled deep foundations are popular in Japan for the foundation of tower structures. Stiffeners attached to the shaft of the foundation are used to increase the shaft resistance. This study aims at analyzing the effect of reinforcement with large-diameter drilled deep foundations based on numerical analysis of the representative soil and rock conditions in Korea. The numerical analyses are conducted to analyze the reinforcement effect of various stiffener conditions of number, inclination, location and length. Regarding to number of stiffeners, the effect of reinforcement for weathered and soft rocks increases proportionally as the number of stiffeners increases. For weathered soil, however, the effect of reinforcement increases at a lower rate. The effect of stiffener location is nearly negligible for axially loading cases, while it is significant for laterally loading cases. For the laterally loading cases, upper locations of stiffener give greater reinforcement effect than that of lower location. For stiffener inclinations of axial loading cases, a stiffener inclination equal to 60$^{\circ}$ gives the greatest reinforcement effect.

Optimization of Production of Trehaolse from Maltose using Recombinant Trehalose Synthase from Thermus caldophilus GK24 (재조합 트레할로스 합성효소에 의한 맥아당으로부터 트레할로스 생산 최적화)

  • 조연정;고석훈;이대실;신현재
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • Recombinant trehalose synthase from Thermus caldophilus GK24 showed an ability to produce trehalose from maltose. The activity of the partially purified enzyme was not influenced by most metal ions at 1 mM but was inhibited by 10 mM $Co^{2+}$, $Mn^{2+}$, and $Fe^{2+}$. Enzyme activity varied during prolonged reaction due to changes in the environmental conditions. Thus, the reaction was carried out for an extended time with optimized conditions of $45^{\circ}C$ and pH 7.0. An yield of 32.9% was reached at $60^{\circ}C$ after reaction for 22 h, and, maximum trehalose conversion (69.2%) was attained at $25^{\circ}C$. The yields obtained using enzyme dosages of 10, 25, and 50 U/g were 62.3, 62.3 and 59.0 %, respectively, though the initial conversion rate was higher when the higher dose was used. Similar profiles of trehalose production yields were observed with reaction working volumes of 10 ml to 2,000 ml.

Bioleaching of Heavy Metals from Shooting Range Soil Using a Sulfur-Oxidizing Bacteria Acidithiobacillus thiooxidans (황산화균 Acidithiobacillus thiooxidans를 이용한 사격장 토양 내 중금속 용출)

  • Han, Hyeop-Jo;Lee, Jong-Un;Ko, Myoung-Soo;Choi, Nag-Choul;Kwon, Young-Ho;Kim, Byeong-Kyu;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.457-469
    • /
    • 2009
  • Applicability of bioleaching techniques using a sulfur-oxidizing bacteria, Acidithiobacillus thiooxidans, for remediation of shooting range soil contaminated with toxic heavy metals was investigated. The effects of sulfur concentration, the amount of bacterial inoculum and operation temperature on the efficiency of heavy metal solubilization were examined as well. As sulfur concentration and the amount of bacterial inoculum increased, the solubilization efficiency slightly increased; however, significant decrease of heavy metal extraction was observed with no addition of sulfur or bacterial inoculum. Bacteria solubilized the higher amount of heavy metals at $26^{\circ}C$ than $4^{\circ}C$. Lead showed the highest removal amount from the contaminated soil but the lowest removal efficiency when compared with Zn, Cu and Cr. It was likely due to formation of insoluble $PbSO_{4(s)}$ as precipitate or colloidal suspension. Sequential extraction of the microbially treated soil revealed that the proportion of readily extractable phases of Zn, Cu and Cr increased by bacterial leaching, and thus additional treatment or optimization of operation conditions such as leaching time were required for safe reuse of the soil. Bioleaching appeared to be a useful strategy for remediation of shooting range soil contaminated with heavy metals, and various operating conditions including concentration of sulfur input, inoculum volume of bacteria, and operation temperature exerted significant influence on bioleaching efficiency.

Optimization of drying conditions for the conversion of 6-gingerol to 6-shogaol under subcritical water extraction from ginger (아임계수 추출에서 6-gingerol의 6-shogaol 전환을 위한 생강 건조 조건 최적화)

  • Ko, Min-Jung;Nam, Hwa-Hyun;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.447-451
    • /
    • 2019
  • 6-gingerol can be converted to 6-shogaol, one of the predominant active compounds found in ginger, via processing such as drying and extraction. Subcritical water extraction is the environmentally friendly method of extraction of bioactive compounds using only purified water as a solvent. This study investigated subcritical water extraction ($190^{\circ}C$, 15 min) of 6-gingerol, and 6-shogaol from dried ginger (Zingiber officinale) including drying conditions such as temperature (room temperature, 60, $80^{\circ}C$, and freeze drying) and time duration for drying (1-4 h). The amount of 6-gingerol was found to be reduced, and that of 6-shogaol was found to be increased depending upon the water content of dried ginger. Upon oven-drying ginger at $60^{\circ}C$ for 2 h, the maximum yields of 6-gingerol ($0.18{\pm}0.02mg/g$ fresh weight), and 6-shogaol ($0.47{\pm}0.02mg/g$ fresh weight) were obtained upon subcritical water extraction.

Optimization of Quantification Method of Ergotioneine in Pleurotus eryngii var. ferulae and Its Anti-Oxidant Activity (아위느타리버섯 추출물의 에르고티오네인(Ergothioneine) 정량법 및 항산화 활성에 관한 연구)

  • Park, Seung Hee;Lee, Jeong Min;Lee, Seung Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This study was conducted to establish optimal high pressure liquid chromatography (HPLC) conditions for estimation of the ergothioneine contents in the three kinds of water extracts of Pleurotus eryngii var. ferulae (Meaksong, Beesan No. 2, Baekwhang). By comparing the four different HPLC conditions, optimun condition for quantifying the contents of ergotioneine was established (shodex HILIC column, 35 ℃, 1.0 mL/min). By this method, the contents of ergothioneine in Meakong (3.04 ± 0.02 mg/g), Beesan No. 2 (3.15 ± 0.05 mg/g) and Baewhang (1.13 ± 0.07 mg/g) were estimated. DPPH and ABTS radical scavenger activities of these three kinds of Pleurotus eryngii var. ferulae were estimated and the contents of total phenol and flavonoid were also estimated. Taken together, this study establish an optimun HPLC condition for determining the ergothioneine contents in water extracts of Pleurotus eryngii var. ferulae. Furthermore water extracts of Maesong and Beesan No. 2 showed relatively high contents of ergothioneine and antioxidant activity, suggesting that these materials could be used as potential antioxidant in developing functional cosmetics.

Case Study on Design Efficiency and Bearing Capacity Characteristics of Bored PHC Piles (PHC 매입말뚝의 설계효율과 지지력 특성 사례분석)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Choi, Yong-Kyu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.45-53
    • /
    • 2019
  • In this study, it was analyzed the cases of bored PHC piles designed for the building foundations. The overall length of the piles varies within a maximum of 35 m. However, the average length was 17.0 to 18.9 m depending on the kind of the bedrock, with no significant difference. The socket length entered into the bedrock was designed with approximately 58% of the whole piles being 1m, the minimum length of the specification, and up to 5m. Although the range in design efficiency was very large, on average it was about 70%, consistent with the usual known extent. Applications with low design efficiency were mainly shown on the foundation of low-rise buildings or rides with low design load. On the weathered rock, the design load, which governs the design result was widely distributed at 65 to 97% of allowable bearing capacity of ground. The ratio of allowable axial load of piles to allowable bearing capacity of ground is also widely distributed between 36 and 115%, so optimization efforts are required along with design efficiency. On the other hand, the allowable bearing capacity on the soft or hard rock was highly equal, mostly within 90% of the allowable axial load of piles. In the design, the end bearing resistance averaged over 75% of the allowable bearing capacity. However, the results of the dynamic pile load test show that the end bearing resistance was predominant under the E.O.I.D conditions, and in some cases, the end bearing resistance was at least 25% under the restrike conditions.

Evaluation of the Optimal Grouser Shape Ratio of Dozer Considering the Ground Conditions (지반 특성을 고려한 도저의 최적 그라우저 형상비 평가)

  • Baek, Sung-Ha;Kwak, Tae-Young;Choi, Changho;Lee, Seong-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.31-41
    • /
    • 2021
  • A dozer is a construction machinery used to move soil mass along large open tracts of land. Soil thrust generated on the soil-track interface determines the performance of the dozer; to improve the tractive performance of the dozer, the outer surface of the continuous-track is designed to protrude with grousers. In this study, we calculated soil thrust of the dozer equipped with grousers with various shape ratios, and evaluated the optimal grouser shape ratio considering ground conditions. Grouser generated additional soil thrust on the side of the continuous-track (e.g., side soil thrust) and converted the shearing surface (e.g., from soil-track interface to soil-soil interface), increasing the soil thrust of dozer by about 1.3 to 1.6 times. The effect of grouser's shape ratio on the soil thrust of dozer differed with the relative density of the ground. As the shape ratios of grouser increased, soil thrust of dozer decreased at the relative density of 40% and increased at the relative density of 80%. Based on these results, it can be concluded that the shape ratio of grouser severely affects the dozer's performance; thus, careful consideration of the optimal shape ratio of grouser is of great importance in the mechanical design, evaluation, and optimization of the undercarriage of dozers.

Optimization of Preparation Conditions of Vanadium-Based Catalyst for Room Temperature Oxidation of Hydrogen Sulfide (황화수소 상온 산화를 위한 바나듐계 촉매의 제조 조건 최적화 연구)

  • Kang, Hyerin;Lee, Ye Hwan;Kim, Sung Chul;Chang, Soon Woong;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.326-331
    • /
    • 2021
  • In this study, the preparation conditions for a TiO2-based vanadium-based catalyst for oxidizing hydrogen sulfide at room temperature were optimized. Four types of commercial TiO2 were used as a catalyst support and the performance evaluation of hydrogen sulfide oxidation at room temperature of V/TiO2 by varying vanadium contents prepared using the impregnation method was performed. Among the types of TiO2 tested, it was confirmed that the catalyst with the vanadium content of 5% and based on TiO2(A) has the best hydrogen sulfide conversion rate of 58%. By comparing the physical and chemical properties of the catalyst, the specific surface area of the support and the species of dominant vanadium are the major factor in catalyst performance. In order to confirm the regeneration characteristics of the catalyst with reduced activity, heat treatment was performed at 400 ℃ for 2 h, and the amount of hydrogen sulfide oxidation decreased by 10% due to the partial deposition of sulfur in the regenerated catalyst, but it was confirmed that the initial performance was similar.