• Title/Summary/Keyword: optimization conditions

Search Result 3,141, Processing Time 0.033 seconds

Using Genetic Algorithms for Routing Metric in Wireless Mesh Network (무선 메쉬 네트워크에서 유전 알고리즘을 이용한 라우팅 메트릭 기법)

  • Yoon, Chang-Pyo;Shin, Hyo-Young;Ryou, Hwang-Bin
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • Wireless mesh network technology with transmission speeds similar to wired and wireless technology means to build, compared with wired networks, building a more efficient network to provide convenience and flexibility. The wireless mesh network router nodes in the energy impact of the mobility is less constrained and has fewer features entail. However, the characteristics of various kinds due to network configuration settings and the choice of multiple paths that can occur when the system overhead and there are many details that must be considered. Therefore, according to the characteristics of these network routing technology that is reflected in the design and optimization of the network is worth noting. In this paper, a multi-path setting can be raised in order to respond effectively to the problem of the router node data loss and bandwidth according to traffic conditions and links to elements of the hop count evaluation by using a genetic algorithm as a workaround for dynamic routing the routing metric for wireless mesh network scheme is proposed.

Optimization of Culture Conditions for the [+]-Eudesmin Production in Magnolia Sieboldii Cells (함박꽃나무의 현탁배양세포로부터 [+]-Eudesmin의 생산을 위한 최적화)

  • Hwang Sung Jin
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.34-39
    • /
    • 2005
  • In order to product the furofuranoid lignans, (+)-eudesmin which is one of the secondary products from Magnolia sieboldii. through cell suspension cultures; various culture media, initial sucrose concentration, elicitations, shaking speeds, and inoculum sizes. Among the culture media tested, MS medium had a pronounced effect on suspension cell growth and (+)-eudesmin contents. The maximum dry cell weight (DCW) of 3.71 g per flask was obtained at inoculum size of 0.5 g and in MS medium supplemented with $3\%$ sucrose plus 0.5 mg/L 2,4-D after 8 weeks. (+)-Eudesmin biosynthesis was stimulated with high initial sucrose concentration ,and the maximum (+)-eudesmin production of $3.2{\mu}g/g$ DCW was achieved at 200mg/L chitosan and $5\%$ initial medium sucrose. The optimal shaking speeds for dry biomass accumulation and (+)-eudesmin contents was 130 rpm. This work is considered to be helpful for large-scale bioprocessing of Magnolia sieboldii suspension cell cultures in bioreactor.

Carrying pose optimization by using wrench space (렌치 스페이스를 이용한 물체 들기 자세 최적화)

  • Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.4
    • /
    • pp.19-26
    • /
    • 2015
  • This paper presents a method for optimizing a carrying pose of human body for a given object. The inputs are articulated human body model and and arbitrary-shaped object. We assume that the object is big and heavy, so that both arms should be used to carry it. Unlike small and light objects, big and heaby objects can be hold by only a small range of body poses while keeping a physical statbility. We first introduce an algorithm that evaluates a physical stability of a given human body pose and object state (position and orientation). Then, we define a configuration space and search the space for the most stable carrying pose by using the evaluation algorithm. Finally, to demonstrate the usability of our method, we present the results which each is experimented with different shaped objects and additional user conditions.

Application of Hybrid SNCR/SCR process for Improved N Ox Removals Efficiency of SNCR (SNCR의 N Ox 제거효율 향상을 위한 Hybrid SNCR/SCR 공정 응용)

  • 최상기;최성우
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.997-1004
    • /
    • 2003
  • The objective of this research was to test whether, under controlled laboratory conditions, hybrid SNCR/SCR process improves N $O_{x}$ removal efficiency in comparison with the SNCR only. The hybrid process is a combination of a redesigned existing SNCR with a new downstream SCR. N $O_{x}$ reduction experiments using a hybrid SNCR/SCR process have been conducted in simple NO/N $H_3$/ $O_2$ gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial N $O_{x}$ concentration was 500 ppm in the presence of 5% or 15% $O_2$. Commercial catalysts, $V_2$ $O_{5}$ -W $O_3$-S $O_4$/Ti $O_2$, were used for SCR N $O_{x}$ reduction. The residence time and space velocity were around 1.67 seconds and 2,400 $h^{-1}$ or 6000 $h^{-1}$ in SNCR and SCR reactors, respectively. N $O_{x}$ reduction of the hybrid system was always higher than could be achieved by SNCR alone at a given value of N $H_{3SLIP}$. Optimization of the hybrid system performance requires maximizing N $O_{x}$ removal in the SNCR process. An analysis based on the hybrid system performance in this lab-scale work indicates that a equipment with N $O_{xi}$ =500 ppm will achieve a total N $O_{x}$ removal of about 90 percent with N $H_{3SLIP}$ $\leq$ 5 ppm only if the SNCR N $O_{x}$ reduction is at least 60 percent. A hybrid SNCR/SCR process has shown about 26∼37% more N $O_{x}$ reduction than a SNCR unit process in which a lower temperature of 85$0^{\circ}C$ turned out to be more effective.be more effective.

Robust Intelligent Digital Redesign of Nonlinear System with Parametric Uncertainties (불확실성을 갖는 비선형 시스템의 강인한 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • This paper presents intelligent digital redesign method for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an . example to guarantee the stability and effectiveness of the proposed method.

Effect of Fermentation Conditions on the Production of Lovastatin by Aspergillus terreus (Aspergillus terreus의 발효조건이 lovastatin 생산에 미치는 영향)

  • 김병곤;전계택;정용섭
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.507-513
    • /
    • 2000
  • The biosynthesis of lovastatin, a cholesterol lowering agent formed by the filamentous fungus Aspergillus terreus, was examined in a 2.5 L jar fermenter. In batch bioreactor cultures conducted at various agitation rates, 400 rpm showed the best result in terms of lovastatin production. Notably, the effect of pH on lovastatin biosynthesis was found to be significant: when the pH was controlled at around 5.8 during the whole fermentation period, lovastatin concentration reached 598 mg/L, which is much hihger than the amounts obtained by pH-uncontrolled and pH 7.4-controlled fermentations. In addition, both L-histidine and L-tryptophan were observed to be favorable amino acids for the enhancement of lovastatin production when 6 g/L of the respective amino acids were supplemented at the beginning of the fermentation period. By further optimization of the production media and the physical environment, lovastatin production was increased to 836 mg/L (3.5 mg/L/hr) which is approximately 10 times higher than the productivity of the basic control culture.

  • PDF

Optimal Operation of Motor/Turbine Processes in Utility Plant (유틸리티 플랜트 모터/ 터빈 공정의 최적운전)

  • Oh, Sanghun;Yeo, Yeong Koo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.234-241
    • /
    • 2007
  • To achieve safe operation and to improve economics it is imperative to monitor and analyse demand and supply of utilities and to meet utility needs in time. The main objective of motor/turbine processes is to manipulate steam and electricity balances in utility plants. The optimal operation of motor/turbine processes is by far the most important to improve economics in the utility plant. In order to analyse motor/turbine processes, we need steady state models for steam generation equipments and steam distribution devices as well as turbine generators. In addition heuristics concerning various operational situations are required. The motor/turbine optimal operation system is based on utility models and operational knowledgebase and provides optimal operating conditions when the amount of steam demand from various steam headers is changed frequently. The optimal operation system also produces optimal selection of driving devices for utility pumps to reduce operating cost.

Evaluation of Hybrid Thermal Oxidation(HTO) System for Removal of MEK(Methyl ethyl ketone) and Toluene (복합열산화(Hybrid Thermal Oxidation) 시스템을 이용한 MEK(Methyl ethyl ketone)와 Toluene 제거 평가)

  • Jang, Duhun;Bae, Wookeun;Kim, Moonil;Kim, Kyungtae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, optimization of MEK and Toluene removal was conducted by HTO(Hybrid Thermal Oxidation) system. HTO system has a multi-bed reaction plate and the plate consisted of wasted heat regeneration part and catalysis part. VOCs removal by HTO system was estimated by changing inlet flow rates with different valve changing times. Under $350^{\circ}C$ of combustion temperature, VOCs was fully converted and the equivalent conversion was 100%. The thermal oxidation efficiency, related to the amount of injected fuel into HTO system and the valve change time, was revealed at the level of 93.0~96.3%. In case of MEK removal by HTO system, the efficiency was ranged from 91.1 to 97.1%. Also, Toluene removal efficiency(93.2~97.4%) was good and stable with respect to the operating conditions. Considering above results, it was proved that HTO system could be a stable and compact system for VOCs, especially MEK and Toluene with high removal efficiency.

Mechanical behavior investigation of steel connections using a modified component method

  • Chen, Shizhe;Pan, Jianrong;Yuan, Hui;Xie, Zhuangning;Wang, Zhan;Dong, Xian
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.117-126
    • /
    • 2017
  • The component method is an analytical approach for investigating the moment-rotation relationship of steel connections. In this study, the component method was improved from two aspects: (i) load analysis of mechanical model; and (ii) combination of spring elements. An optimized component method with more reasonable component models, spring arrangement position, and boundary conditions was developed using finite element analysis. An experimental testing program in two major-axis and two minor-axis connections under symmetrically loading was carried out to verify this method. The initial rotational stiffness obtained from the optimized component method was consistent with the experimental results. It can be concluded that (i) The coupling stiffness between column and beam flanges significantly affects the effective height of the tensile-column web. (ii) The mechanical properties of the bending components were obtained using an equivalent t-stub model considering the bending capacity of bolts. (iii) Using the optimized mechanical components, the initial rotational stiffness was accurately calculated using the spring system. (iv) The characteristics of moment-rotation relationship for beam to column connections were effectively expressed by the SPRING element analysis model using ABAQUS. The calculations are simpler, and the results are accurate.

A FINITE ELEMENT STRESS ANALYSIS OF THE STRESS DISTRIBUTION AND THE SHOCK ABSORPTION IN AN OSSEOINTEGRATED IMPLANT-NATURAL TOOTH SUPPORTED FIXED PARTIAL DENTURE (골유착성 임프란트와 자연치를 이용한 고정성 국소의치에서 응력분산 및 충격흡수에 관한 유한요소법적 응력분석)

  • Jeong Chang-Mo;Lee Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.582-610
    • /
    • 1992
  • The long-term success of any dental implant is dependent upon the optimization of stresses which occur during oral function and parafunction. Especially, it has been suggested that there is an unique set of problems associated with joining an osseointegrated implant and a natural tooth with a fixed partial denture. For this particular case, although many literatures suggest different ways to avoid high stress concentrations on the bone surrounding the implant under static and dynamic loading conditions, but few studies on the biomechanical efficacy of each assertion have been reported. The purpose of this investigation was to evaluate the efficacies of clinically suggested methods on stress distribution under static load and shock absorption under dynamic load, using two dimensional finite element method. In FEM models of osseointegrated implant-natural tooth supported fixed partial dentures, calculations were made on the stresses in surrounding bone and on the deflections of abutments and superstructure, first, to compare the difference in stress distribution effects under static load by the flexure of fastening screw or prosthesis, or intramobile connector, and second, to compare the difference in the shock absorption effects under dynamic load by intramobile connector or occlusal veneering with composite resin. The results of this analysis suggest that : 1. Under static load condition, using an implant design with fastenign screw connecting implant abutment and prosthesis or increasing the flexibility of fastening screw, or increasing the flexibility of prosthesis led to the .increase in height of peak stresses in cortical bone surrounding the implant, and has little effect on stress change in bone around the natural tooth. 2. Under static load condition, intramobile connector caused the substantial decrease in stress concentration in cortical bone surrounding the implant and the slight increase in stress in bone around the natural tooth. 3. Under dynamic load condition, both intramobile connector and composite resin veneering showed shock absorption effect on bone surrounding the implant and composite resin veneering had a greater shock absorption effect than intramobile connector.

  • PDF