• Title/Summary/Keyword: optimization approach

Search Result 2,376, Processing Time 0.029 seconds

Optimization of Computer Network with a Cost Constraint (비용 제약을 갖는 컴퓨터 네트워크의 최적화)

  • Lee, Han-Jin;Yum, Chang-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.1
    • /
    • pp.82-88
    • /
    • 2007
  • This paper considers a topological optimization of a computer network design with a cost constraint. The objective is to find the topological layout of links, at maximal reliability, under the constraint that the network cost is less or equal than a given level of budget. This problem is known to be NP-hard. To efficiently solve the problem, a genetic approach is proposed. Two illustrative examples are used to explain and test the proposed approach. Experimental results show evidence that the proposed approach performs more efficiently for finding a good solution or near optimal solution in comparison with a simulated annealing method.

Evaluation of ATC in Haenam-Cheju HVDC System Using Cost Calculation (해남-제주간 직류송전시스템의 비용산정을 통한 ATC계산)

  • Son Hyun-Il;Lee Hyo-Sang;Shin Dong-Joon;Kim Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.4
    • /
    • pp.193-198
    • /
    • 2005
  • As the electrical power industry is restructured, the electrical power exchange is extended. One of the key information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). To calculate ATC, traditional deterministic approach is based on the severest case, but the approach has the complexity of procedure. Therefore, novel approach for ATC calculation is proposed using cost optimization in this paper Cheju Island interconnected HVDC system with mainland in KEPCO (Korean Electric Power Corporation) systems, and the demand of Cheju Island increases about 10 ($\%$) every year. To supply for increasing demand, the supply of HVDC system must be increased. This paper proposed the optimal transfer capability of HVDC system between Haenam in mainland and Cheju in Chju Island through cost optimization. The cost optimization is considered production cost in Cheju Island, wheeling charge through Haenam-Cheju HVDC system and outage cost with one depth (N-1 contingency)

Economic Power Dispatch with Discontinuous Fuel Cost Functions using Improved Parallel PSO

  • Mahdad, Belkacem;Bouktir, T.;Srairi, K.;Benbouzid, M.EL.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • This paper presents an improved parallel particle swarm optimization approach (IPPSO) based decomposed network for economic power dispatch with discontinuous fuel cost functions. The range of partial power demand corresponding to the partial output powers near the global optimal solution is determined by a flexible decomposed network strategy and then the final optimal solution is obtained by parallel Particle Swarm Optimization. The proposed approach tested on 6 generating units with smooth cost function, and to 26-bus (6 generating units) with consideration of prohibited zone effect, the simulation results compared with recent global optimization methods (Bee-OPF, GA, MTS, SA, PSO). From the different case studies, it is observed that the proposed approach provides qualitative solution with less computational time compared to various methods available in the literature survey.

Optimization of fairway design parameters: Systematic approach to manoeuvring safety

  • Gucma, Stanislaw;Zalewski, Pawel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.129-145
    • /
    • 2020
  • The article presents a systematic approach to design of marine navigation channels parameters resulting from manoeuvring and operational safety. Relations between the parameters of waterway system elements and the conditions of safe ship operation have been determined and the objective function of waterway parameters' optimization problems has been minimized with respect to variables of construction and operation costs. These costs have been functionally associated to variables of channel width at the bottom and fairway depth. The method of fairway's width computation at specified safe depth at the preliminary and detailed stages of waterway design has been proposed. The results of this method application have been illustrated with two examples: 1. The modernization of Szczecin-Swinoujscie fairway aimed at accepting vessels of 60,000 DWT capacity. 2. Construction of an approach channel leading to a newly built container terminal in Swinoujscie harbour (Poland), handling ocean-going container ships of 20,000 TEU capacity.

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사로켓 최적설계)

  • Choi Young Chang;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.11-15
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better result than sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91 kg, total length of 6.18 m, outer diameter of 0.60 m and the payload mass of 7.5 kg has been successfully designed.

  • PDF

Posture Optimization for a Humanoid Robot using Particle Swarm Optimization (PSO를 이용한 휴머노이드 로봇의 최적자세 생성)

  • Yun, JaeHum;Chien, Dang Van;Tin, Tran Trung;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.450-456
    • /
    • 2014
  • Humanoid robot is the most suitable robot platform for effective human and robot interaction. However, the robot's complicated body structure containing more than twenty joint actuators makes it difficult to generate stable and elaborate postures using the conventional inverse kinematic method. This paper proposes an alternative approach to generate difficult postures of touching an object placed in front of the foot by the left or right hand with its torso bent forward in single support phase using the fast computational optimization method, particle swarm optimization. The simulated postures are also applied to a commercial humanoid robot platform, which validates the feasibility of the proposed approach.

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사 로켓 최적설계)

  • Choi, Young-Chang;Lee, Jae-Woo;ByUn, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.26-32
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, a comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better results than the sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91kg, total length of 6.36m, outer diameter of 0.60m and the payload mass of 7.5kg has been successfully designed.

MINLP optimization of a composite I beam floor system

  • Zula, Tomaz;Kravanja, Stojan;Klansek, Uros
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1163-1192
    • /
    • 2016
  • This paper presents the cost optimization of a composite I beam floor system, designed to be made from a reinforced concrete slab and steel I sections. The optimization was performed by the mixed-integer non-linear programming (MINLP) approach. For this purpose, a number of different optimization models were developed that enable different design possibilities such as welded or standard steel I sections, plastic or elastic cross-section resistances, and different positions of the neutral axes. An accurate economic objective function of the self-manufacturing costs was developed and subjected to design, resistance and deflection (in)equality constraints. Dimensioning constraints were defined in accordance with Eurocode 4. The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm was applied together with a two-phase MINLP strategy. A numerical example of the optimization of a composite I beam floor system, as presented at the end of this paper, demonstrates the applicability of the proposed approach. The optimal result includes the minimal produced costs of the structure, the optimal concrete and steel strengths, and dimensions.

A Dynamic Programming Approach to PCB Assembly Optimization for Surface Mounters

  • Park, Tae-Hyoung;Kim, Nam
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.192-199
    • /
    • 2007
  • This paper proposes a new printed circuit board (PCB) assembly planning method for multi-head surface mounters. We present an integer programming formulation for the optimization problem, and propose a heuristic method to solve the large NP-complete problem within a reasonable time. A dynamic programming technique is then applied to the feeder arrangement optimization and placement sequence optimization to reduce the overall assembly time. Comparative simulation results are finally presented to verify the usefulness of the proposed method.

Magnet Design using Topology Optimization

  • Jenam Kang;Park, Seungkyu;Semyung Wang
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.79-83
    • /
    • 2003
  • The topology optimization for the magnet design is studied. The magnet design in the C-core actuator is investigated by using the derived topology optimization algorithm and finite element method. The design sensitivity equation for the topology optimization is derived using the adjoint variable method and the continuum approach.