• 제목/요약/키워드: optimization algorithm

검색결과 5,708건 처리시간 0.039초

표면의 방향정보를 고려한 메쉬의 특성정보의 보존 (Mesh Simplification for Preservation of Characteristic Features using Surface Orientation)

  • 고명철;최윤철
    • 한국멀티미디어학회논문지
    • /
    • 제5권4호
    • /
    • pp.458-467
    • /
    • 2002
  • 대용량의 다각형 표면 데이터를 효과적으로 감소시키는 많은 간략화 알고리즘들이 제안되었다. 이들 간략화 기법들은 정점, 에지, 삼각형 등과 같은 기본적인 간략화 단위에 대해 자신의 붕괴 비용함수를 적용하여 간략화 전후의 에러를 최소화 한다. 기존의 제안된 비용 함수들은 대부분 거리최적화에 기반 한 에러 측정방법을 사용한다. 그러나 기본적으로 스칼라 값인 거리요소 만으로는 현재 메쉬의 지역적인 특징을 정확히 정의하기 어렵다. 따라서 곡률이 심한 지역의 특징 정보를 유지하지 못함으로써 간략화 단계를 높일수록 원래의 세부적인 모양을 잃어버리는 단점이 있다. 본 논문에서는 표면의 방향과 같은 벡터성분을 비용함수의 요소로서 고려한다. 표면의 방향성분은 거리와 같은 스칼라 양에 비의존적이다. 따라서 작은 스칼라 양을 갖는 요소라도 이의 벡터성분의 크기에 따라 보존 여부를 재고할 수 있다. 또한 제안된 비용함수를 바탕으로 하는 반-에지 붕괴에 기반 한 간략화 알고리즘을 개발한다. 이는 객체의 제거 후에 기존 에지의 두 정점 중 하나를 이용하여 새로운 정점을 표현하는 방법으로서 저장공간 상의 이점이 있으며 대용량 표면데이터의 실시간 전송을 요하는 렌더링 시스템에 매우 효과적으로 적용될 수 있다.

  • PDF

딥뉴럴네트워크 기반의 흡연 탐지기법 설계 (Design of detection method for smoking based on Deep Neural Network)

  • 이상현;윤현수;권현
    • 융합보안논문지
    • /
    • 제21권1호
    • /
    • pp.191-200
    • /
    • 2021
  • 컴퓨팅 기술의 발전과 데이터를 저장할 수 있는 클라우드 환경, 그리고 스마트폰의 보급으로 인하여 많은 데이터가 생산되는 환경에서 인공지능 기술이 발전되고 있다. 이러한 인공지능 기술 중에서 딥뉴럴네트워크는 이미지 인식, 이미지 분류 등에서 탁월한 성능을 제공하고 있다. 기존에는 이러한 딥뉴럴네트워크를 이용하여 산불 및 화재 예방을 위한 이미지 탐지에 대해 많은 연구가 있었지만 흡연 탐지에 대한 연구는 미흡한 실정이었다. 한편 군 부대에서는 각종 시설에 대한 감시체계를 CCTV를 통해 구축하고 있는데 화재, 폭발사고 예방을 위해 탄약고 주변에서의 흡연이나 금연구역에서의 흡연을 CCTV로 탐지하는 것이 필요한 상황이다. 본 논문에서는 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지하는 방법에 대한 성능 분석을 하였으며 활성화함수, 학습률 등 실험적으로 최적화된 수치를 반영하여 흡연사진과 비흡연사진을 두 가지 경우로 탐지하는 것을 하였다. 실험 데이터로는 인터넷 상에 공개되어 있는 흡연 및 비흡연 사진을 크롤링하여 데이터를 구축하였으며, 실험은 머신러닝 라이브러리를 이용하였다. 실험결과로 학습률 0.004로 최적화 알고리즘 Adam을 사용하였을 때, 93%의 accuracy와 92%의 F1-score를 갖는 것을 볼 수 있었다. 또한 이로써 이미지의 연속인 CCTV 영상도 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지할 수 있음을 알 수 있었다.

심층 CNN 기반 구조를 이용한 토마토 작물 병해충 분류 모델 (Tomato Crop Diseases Classification Models Using Deep CNN-based Architectures)

  • 김삼근;안재근
    • 한국산학기술학회논문지
    • /
    • 제22권5호
    • /
    • pp.7-14
    • /
    • 2021
  • 토마토 작물은 병해충의 영향을 많이 받기 때문에 이를 예방하지 않으면 농업 경제에 막대한 손실을 초래할 수 있다. 따라서 토마토의 다양한 병해충의 진단을 빠르고 정확하게 진단하는 시스템이 요구된다. 본 논문에서는 ImageNet 데이터 셋 상에서 다양하게 사전 학습된 딥러닝 기반 CNN 모델을 적용하여 토마토의 9가지 병해충 및 정상인 경우의 클래스를 분류하는 시스템을 제안한다. PlantVillage 데이터 셋으로부터 발췌한 토마토 잎의 이미지 셋을 3가지 딥러닝 기반 CNN 구조를 갖는 ResNet, Xception, DenseNet의 입력으로 사용한다. 기본 CNN 모델 위에 톱-레벨 분류기를 추가하여 제안 모델을 구성하였으며, 훈련 데이터 셋에 대해 5-fold 교차검증 기법을 적용하여 학습시켰다. 3가지 제안 모델의 학습은 모두 기본 CNN 모델의 계층을 동결하여 학습시키는 전이 학습과 동결을 해제한 후 학습률을 매우 작은 수로 설정하여 학습시키는 미세 조정 학습 두 단계로 진행하였다. 모델 최적화 알고리즘으로는 SGD, RMSprop, Adam을 적용하였다. 실험 결과는 RMSprop 알고리즘이 적용된 DenseNet CNN 모델이 98.63%의 정확도로 가장 우수한 결과를 보였다.

Comparison of Dosimetrical and Radiobiological Parameters on Three VMAT Techniques for Left-Sided Breast Cancer

  • Kang, Seong-Hee;Chung, Jin-Beom;Kim, Kyung-Hyeon;Kang, Sang-Won;Eom, Keun-Yong;Song, Changhoon;Kim, In-Ah;Kim, Jae-Sung
    • 한국의학물리학회지:의학물리
    • /
    • 제30권1호
    • /
    • pp.7-13
    • /
    • 2019
  • Purpose: To compare the dosimetrical and radiobiological parameters among various volumetric modulated arc therapy (VMAT) techniques using restricted and continuous arc beams for left-sided breast cancer. Materials and Methods: Ten patients with left-sided breast cancer without regional nodes were retrospectively selected and prescribed the dose of 42.6 Gy in 16 fractions on the planning target volume (PTV). For each patient, three plans were generated using the $Eclipse^{TM}$ system (Varian Medical System, Palo Alto, CA) with one partial arc 1pVMAT, two partial arcs 2pVMAT, and two tangential arcs 2tVMAT. All plans were calculated through anisotropic analytic algorithm and photon optimizer with 6 MV photon beam of $VitalBEAM^{TM}$. The same dose objectives for each plan were used to achieve a fair comparison during optimization. Results: For PTV, dosimetrical parameters such as Homogeneity index, conformity index, and conformal number were superior in 2pVMAT than those in both techniques. $V_{95%}$, which indicates PTV coverage, was 91.86%, 96.60%, and 96.65% for 1pVMAT, 2pVMAT, and 2tVMAT, respectively. In most organs at risk (OARs), 2pVMAT significantly reduced the delivered doses compared with the other techniques, excluding the doses to contralateral lung. For the analysis of radiobiological parameters, a significant difference in normal tissue complication probability was observed in ipsilateral lung while no difference was observed in the other OARs. Conclusions: Our study showed that 2pVMAT had better plan quality and normal tissue sparing than 1pVMAT and 2tVMAT but not for all parameters. Therefore, 2pVMAT could be considered the priority choice for the treatment planning for left breast cancer.

랜덤포레스트와 Sentinel-2를 이용한 식생 분류의 입력특성 최적화 (Optimization of Input Features for Vegetation Classification Based on Random Forest and Sentinel-2 Image)

  • 이승민;정종철
    • 한국지리정보학회지
    • /
    • 제23권4호
    • /
    • pp.52-67
    • /
    • 2020
  • 최근 북극은 매년 영구 동토층이 녹아 눈으로 덮인 땅이 드러나고 있어 해당 지역 관리를 위한 공간정보가 필요하다. 한국의 국토지리정보원(NGII)은 극지방의 공간정보를 구축하여 극지공간정보 서비스를 제공하고 있으나, 식생 정보는 제공되지 않고 있으므로 식생 공간정보 구축을 위한 추가적인 연구가 필요하다. 본 연구에서는 북극 스발바르제도의 뉘올레순 지역에 대한 식생 분류를 수행하기 위해 다중 시기의 Sentinel-2 영상을 사용하였다. 전처리 단계에서는 다중 시기 Sentinel-2 영상으로부터 10개 밴드와 6가지 정규 지수식을 생성하였다. 영상 분류는 8개 속성에 대한 토지피복분류를 통해 전체 식생 영역을 추출하는 과정과 전체 식생 영역 내에서 다시 세분류를 수행하는 과정으로 이루어졌다. 영상 분류 알고리즘은 OOB(Out-Of-Bag)를 통해 정확도 평가 및 변수 중요도를 산정할 수 있는 랜덤포레스트를 사용하였다. 전체 정확도는 다시기 영상이 사용되었을 경우와 식생 지수가 추가되었을 경우의 이점을 확인하기 위해 사용된 영상 수에 따라 각각 정확도를 산정하였다. 단일시기의 Sentinel-2 영상은 전체 정확도가 77%였으나, 7개의 다중 시기 Sentinel-2 영상을 기반으로 학습하였을 때, 81%로 향상되었다. 또한, 식생 지수가 추가로 사용된 학습에서 전체 정확도가 약 83%로 향상되었다. 식생 분류 시 변수 중요도는 적색, 녹색, 단파적외선-1 밴드가 가장 높은 변수로 선정되었다. 본 연구는 극지방의 식생에 대한 분류를 수행할 시 입력특성을 최적화하는 기초 연구로 활용될 수 있을 것으로 판단된다.

소형민수헬기 능동진동제어시스템 개발 (Development and Verification of Active Vibration Control System for Helicopter)

  • 김남조;곽동일;강우람;황유상;김도형;김찬동;이기진;소희섭
    • 한국항공우주학회지
    • /
    • 제50권3호
    • /
    • pp.181-192
    • /
    • 2022
  • 헬기의 능동진동제어시스템(AVCS)은 주로터로부터 발생되는 진동을 제어하며, 수동형 진동저감장치 대비 저중량으로 우수한 진동저감 성능을 발휘한다. 본 논문에서는 FxLMS 알고리즘을 기반으로 타코미터 및 가속도 센서 신호를 통해 연산된 제어명령을 하중발생기(CFG)로 전달하여 소형민수헬기의 진동을 제어하는 소프트웨어 개발 및 검증 내용을 제시하였다. DO-178C /DO-331 표준에 따라 모델 기반 설계 기법을 통해 진동제어 소프트웨어를 개발하였으며, PILS 및 HILS 환경에서 실시간 작동 성능을 평가하였다. 특히, PILS 환경에서는 LDRA 기반 검증 커버리지를 통해 소프트웨어의 신뢰성을 향상시켰다. AVCS를 소형민수헬기에 적용하기 위해 지상/비행시험을 통해 대상 헬기 동적응답특성 모델을 획득하였다. 이를 기반으로 시스템 최적화 분석 및 비행시험을 통해 최적 성능을 발휘하는 AVCS 형상을 결정하고, STC 인증을 획득하였다.

영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출 (Road Extraction from Images Using Semantic Segmentation Algorithm)

  • 오행열;전승배;김건;정명훈
    • 한국측량학회지
    • /
    • 제40권3호
    • /
    • pp.239-247
    • /
    • 2022
  • 현대에는 급속한 산업화와 인구 증가로 인해 도시들이 더욱 복잡해지고 있다. 특히 도심은 택지개발, 재건축, 철거 등으로 인해 빠르게 변화하는 지역에 해당한다. 따라서 자율주행에 필요한 정밀도로지도와 같은 다양한 목적을 위해 빠른 정보 갱신이 필요하다. 우리나라의 경우 기존 지도 제작 과정을 통해 지도를 제작하면 정확한 공간정보를 생성할 수 있으나 대상 지역이 넓은 경우 시간과 비용이 많이 든다는 한계가 있다. 지도 요소 중 하나인 도로는 인류 문명을 위한 많은 다양한 자원을 제공하는 중추이자 필수적인 수단에 해당한다. 따라서 도로 정보를 정확하고 신속하게 갱신하는 것이 중요하다. 이 목표를 달성하기 위해 본 연구는 Semantic Segmentation 알고리즘인 LinkNet, D-LinkNet 및 NL-LinkNet을 사용하여 광주광역시 도시철도 2호선 공사 현장을 촬영한 드론 정사영상에서 도로를 추출한 다음 성능이 가장 높은 모델에 하이퍼 파라미터 최적화를 적용하였다. 그 결과, 사전 훈련된 ResNet-34를 Encoder로 사용한 LinkNet 모델이 85.125 mIoU를 달성했다. 향후 연구 방향으로 최신 Semantic Segmentation 알고리즘 또는 준지도 학습 기반 Semantic Segmentation 기법을 사용하는 연구의 결과와의 비교 분석이 수행될 것이다. 본 연구의 결과는 기존 지도 갱신 프로세스의 속도를 개선하는 데 도움을 줄 수 있을 것으로 예상된다.

GIS를 이용한 토양정보 기반의 배추 생산량 예측 수정모델 개발 (Development of a modified model for predicting cabbage yield based on soil properties using GIS)

  • 최연오;이재현;심재후;이승우
    • 한국측량학회지
    • /
    • 제40권5호
    • /
    • pp.449-456
    • /
    • 2022
  • 본 연구는 GIS를 통해 토양정보를 수집하고 가공하여 농산물 생산량을 예측하는 모델을 제안한다. 농산물 생산량 예측 딥러닝 알고리즘은 공개된 CNN-RNN 농산물 생산량 예측 모델 구조를 변경하여 국내 농산물 자료 환경에 적합하도록 새롭게 구축하였다. 기존모델은 두 가지 특징을 가지고 있는데 첫 번째는 농산물의 생산량을 해당 필지값이 아닌 당해 평균값으로 대체한다는 것이고 두 번째는 예측하는 연도의 데이터까지 학습한다는 것이다. 새로운 모델은 해당 필지의 값을 그대로 사용하여 데이터의 정확성을 확보하고 예측하고자 하는 연도 이전의 데이터만 가지고 학습할 수 있도록 네트워크 구조를 개선하였다. 제안한 CNN-RNN 모델은 1980년부터 2020년까지의 기상정보, 토양정보, 토양적성도, 생산량 데이터를 학습하여 김장용 가을배추의 지역별 단위면적당 생산량을 예측한다. 2018년부터 2021년까지 4개 연도별 자료에 대하여 계산하고 생산량을 예측한 결과, 테스트 데이터셋에 대한 오차백분율이 약 10% 내외로 실제값과 비교하여 정확도 높은 생산량 예측이 가능했고, 특히 전체 생산량 비중이 큰 지역에서의 생산량은 비교적 근접하게 예측하는 것으로 분석되었다. 또한 제안모델과 기존모델은 모두 학습자료 연도 수가 증가할수록 점점 오차가 작아지므로 학습데이터가 많아질수록 범용 성능은 향상되는 결과를 나타낸다.

Opcode와 API의 빈도수와 상관계수를 활용한 Cerber형 랜섬웨어 탐지모델에 관한 연구 (A Study on the Cerber-Type Ransomware Detection Model Using Opcode and API Frequency and Correlation Coefficient)

  • 이계혁;황민채;현동엽;구영인;유동영
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.363-372
    • /
    • 2022
  • 최근 코로나 19 팬더믹 이후 원격근무의 확대와 더불어 랜섬웨어 팬더믹이 심화하고 있다. 현재 안티바이러스 백신 업체들이 랜섬웨어에 대응하고자 노력하고 있지만, 기존의 파일 시그니처 기반 정적 분석은 패킹의 다양화, 난독화, 변종 혹은 신종 랜섬웨어의 등장 앞에 무력화될 수 있다. 이러한 랜섬웨어 탐지를 위한 다양한 연구가 진행되고 있으며, 시그니처 기반 정적 분석의 탐지 방법과 행위기반의 동적 분석을 이용한 탐지 연구가 현재 주된 연구유형이라고 볼 수 있다. 본 논문에서는 단일 분석만을 이용하여 탐지모델에 적용하는 것이 아닌 ".text Section" Opcode와 실제 사용하는 Native API의 빈도수를 추출하고 K-means Clustering 알고리즘, 코사인 유사도, 피어슨 상관계수를 이용하여 선정한 특징정보들 사이의 연관성을 분석하였다. 또한, 타 악성코드 유형 중 웜과 Cerber형 랜섬웨어를 분류, 탐지하는 실험을 통해, 선정한 특징정보가 특정 랜섬웨어(Cerber)를 탐지하는 데 특화된 정보임을 검증하였다. 위와 같은 검증을 통해 최종 선정된 특징정보들을 결합하여 기계학습에 적용하여, 최적화 이후 정확도 93.3% 등의 탐지율을 나타내었다.

풍력발전기 디지털트윈 개발을 위한 드라이브트레인 시뮬레이션 모델의 기계학습 연구 (A Study on Machine Learning of the Drivetrain Simulation Model for Development of Wind Turbine Digital Twin)

  • 최요나단;김탁곤
    • 한국시뮬레이션학회논문지
    • /
    • 제32권3호
    • /
    • pp.33-41
    • /
    • 2023
  • 최근 전 세계가 탄소중립에 관심이 높아지면서 재생에너지 발전량이 증가하고 있다. 하지만 재생에너지는 간헐성과 변동성이 심해 발전량 예측이 어렵고, 정확하지 않은 발전량 예측은 전력 계통에 부정적인 영향을 끼칠 수 있다. 이에 본 연구에서는 풍력발전기 발전량 예측 문제를 해결할 방법으로 디지털트윈 개념을 적용하였다. 풍력발전기의 회전이 발전량과 높은 상관관계를 갖는 부분을 반영하여 풍력발전기 드라이브트레인 회전 거동을 주로 모의하는 기계학습된 모델을 개발하였다. 회전 거동을 모의하는 드라이브트레인 시뮬레이션 모델의 기반은 잘 알려진 회전 시스템을 모의하는 시스템 상태방정식으로 설정되었다. 또한 제조사로부터 제공되지 않은 파라미터들에 대하여 시뮬레이션 기반 기계학습을 수행하였다. 기계학습된 드라이 브트레인 모델은 27개의 실제 풍력발전기 운영데이터 세트를 활용하여 검증되었다. 검증 결과, 드라이브트레인 모델은 실제 풍력발전기 운영데이터 세트와 비교하여 평균 4.41%의 오차를 보였다. 결과적으로 기계학습된 드라이브트레인 모델은 실제 풍력발전기 드라이브트레인 시스템을 잘 모사한다고 평가하였다.