• Title/Summary/Keyword: optimal tension control

Search Result 35, Processing Time 0.02 seconds

Effects of Nitrogen and Potassium Fertigation on Growth, Yield and Quality of Musk Melon (Cucumis melo. L) (시설멜론의 관비재배를 위한 질소와 칼륨의 관비수준 설정)

  • Rhee, Han-Cheol;Park, Jin-Meun;Seo, Tae-Cheol;Choi, Gyoeng-Lee;Roh, Mi-Young;Cho, Myeung-Whan
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • This study was conducted to identify optimal concentrations of N (nitrogen) and K (Potassium) fertilizers on growth, yield and quality of melon (Cucumis melo. L) when they were grown with a fertigation culture in a greenhouse. Three strength (S) levels of fertilizers, including 1 S, 1/2S, and 1/4S were supplied N and K nutrients as using a trickle irrigation system. When the strength level of fertilizers was increased from 1/4S to 1 S, the level of EC (electronic conductivity) in soil was increased. Soil-water tension was ranged between -15 and -20kPa until fruit setting stage, whereas it was ranged between -45 and -50kPa in the later growth stages. In results, N fertilizer had effects on fruit yield and quality. A higher fruit yield was observed when plants were supplied with 1 S and 1/2S level of N fertilizer. The highest yield of marketable fruit, about 5,086kg/10a, was also observed when plants were supplied with 1/2S N fertilizer. A higher net index and sugar content of fruit was observed in the treatments of 1/2S and 1/4S level of N fertilizer compared to 1 S level. In contrast, there was no statistic difference in the yield and quality with three levels of K fertilizer. Results indicate that the 1/2S level for N and 1/4S level for K fertilizer are effective and optimal for the melon plants grown under the fertigation culture in terms of increasing fruit yield and quality and reducing the cost of fertilizers.

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

Effects of Sodium Alginate, Gum Karaya, and Gum Arabic on the Foaming Properties of Sodium Caseinate (Sodium Alginate, Gum Karaya 및 Gum Arabic이 Sodium Caseinate의 거품성에 미치는 효과)

  • Yang, Seung-Taek;Kim, Mi-Sook;Park, Chun-Og
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.109-117
    • /
    • 1993
  • To investigate the effects of sodium alginate, gum karaya and gum arabic on the foaming properties of sodium caseinate, surface tension, specific viscosity, turbidity, foaming ability and foam stability of the caseinate solution with added gums were examined. Surface tensions of the 5%(w/v) protein solutions containing gums at pH 7.0 and 8.0 were $43.7{\sim}44.7dyne/cm$ and $43.6{\sim}44.0 dyne/cm$, respectively. Specific viscosities of the solutions with 0.2 and 0.3% sodium alginates were 15.6 and 39.1 at pH 7.0 (control, 2.8), and 12.1 and 8.2 at pH 8.0 (control, 2.6), respectively. Turbidities were $69.5{\sim}74.0$ at pH 7.0 and $68.0{\sim}72.5$ at pH 8.0. The optimum conditions for foaming ability of the solutions were 0.1% conc. and 15 min whipping in addition of sodium alginates; 0.2% conc. and 20 min whipping in gum karaya; 0.1% conc. and 10 min whipping in gum arabic. For foam stability optimal concentrations were 0.3% in sodium alginate and gum karaya at pH 7.0 and 0.2% at pH 8.0. Addition of sodium alginates was most effective to increase foam stability of the solution, but was not effective to increase foaming ability. At same pH, surface tensions and turbidity of the solutions were related to foaming ability and specific viscosities were related to foam stability.

  • PDF

Controlled Production of Monodisperse Polycaprolactone Microparticles using Microfluidic Device (미세유체장치를 이용한 생분해성 Polycarprolactone의 단분산성 미세입자 생성제어)

  • Jeong, Heon-Ho
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • Monodisperse microparticles has been particularly enabling for various applications in the encapsulation and delivery of pharmaceutical agents. The microfluidic devices are attractive candidates to produce highly uniform droplets that serve as templates to form monodisperse microparticles. The microfluidic devices that have micro-scale channel allow precise control of the balance between surface tension and viscous forces in two-phase flows. One of its essential abilities is to generate highly monodisperse droplets. In this paper, a microfluidic approach for preparing monodisperse polycaprolactone (PCL) microparticles is presented. The microfluidic devices that have a flow-focusing generator are manufactured by soft-lithography using polydimethylsiloxane (PDMS). The crucial factors in the droplet generation are the controllability of size and monodispersity of the microdroplets. For this, the volumetric flow rates of the dispersed phase of oil solution and the continuous phase of water to generate monodisperse droplets are optimized. As a result, the optimal flow condition for droplet dripping region that is able to generate uniform droplet is found. Furthermore, the droplets containing PCL polymer by solvent evaporation after collection of droplet from device is solidified to generate the microparticle. The particle size can be controlled by tuning the flow rate and the size of the microchannel. The monodispersity of the PCL particles is measured by a coefficient of variation (CV) below 5%.

Effects of concentrations and types of neutral salts on the foaming properties of sodium caseinate (중성염의 종류 및 농도가 sodium caseinate의 거품성에 미치는 영향)

  • Yang, Seung-Taek;Park, Hyung-Sun
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.434-439
    • /
    • 1993
  • To investigate the effects of neutral salts on the foaming properties of sodium caseinate, turbidity, surface tension, absolute viscosity, foaming ability and foam stability of the caseinate solutions(5%, w/v) with added NaF, $Na_2SO_4$, NaCl, $NaNO_3$, and NaSCN at concentrations of 0.1, 0.5, 1.0, 1.5 and 2.0 M were examined. NaCl and $NaNO_3$ improved the foaming ability compared to sodium caseinate without salt, and also $Na_2SO_4$ and NaF did the foaming ability at the concentrations of 0.1M and 0.5M, while NaSCN did not improve the foaming ability. For foaming ability optimal concentrations of the salts were 0.5, 1.5, and 1.0 M in $Na_2SO_4$, NaCl, and NaSCN, respectively. Additions of $Na_2SO_4$, NaF and $NaNO_3$ at 0.5 M concentrations improved the foam stability of sodium caseinate by 825%, 615%, and 53% compared to control, while those of NaSCN reduced foam stability.

  • PDF